Minh-Toan Nguyen , Tram-Ngoc Bui , Jim Shiau , Tan Nguyen , Thoi-Trung Nguyen
{"title":"Stability of rectangular tunnels in cohesive-frictional soil under surcharge loading using isogeometric analysis and Bayesian neural networks","authors":"Minh-Toan Nguyen , Tram-Ngoc Bui , Jim Shiau , Tan Nguyen , Thoi-Trung Nguyen","doi":"10.1016/j.advengsoft.2024.103861","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates the stability of rectangular tunnels in cohesive-frictional soils under surcharge loading using a combination of IsoGeometric Analysis and artificial neural networks. A dataset of 12,946 samples was generated automatically to analyze a wide range of soil profiles and tunnel geometries. Stability solutions were derived using IsoGeometric Analysis coupled with second-order cone programming, enabling precise and efficient assessments of ultimate surcharge loading. A key contribution of this study is the development of a closed-form solution through a Bayesian regularized neural network, which significantly improves accuracy compared to existing methods. Advanced data visualization techniques, including two- and three-dimensional partial dependency plots, were used to reveal complex relationships among design parameters. Sensitivity analyses provided valuable insights for optimizing tunnel designs, enhancing decision-making processes in geotechnical engineering. This study aims to equip engineers with practical tools for designing rectangular tunnels in real-world applications.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"201 ","pages":"Article 103861"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824002680","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates the stability of rectangular tunnels in cohesive-frictional soils under surcharge loading using a combination of IsoGeometric Analysis and artificial neural networks. A dataset of 12,946 samples was generated automatically to analyze a wide range of soil profiles and tunnel geometries. Stability solutions were derived using IsoGeometric Analysis coupled with second-order cone programming, enabling precise and efficient assessments of ultimate surcharge loading. A key contribution of this study is the development of a closed-form solution through a Bayesian regularized neural network, which significantly improves accuracy compared to existing methods. Advanced data visualization techniques, including two- and three-dimensional partial dependency plots, were used to reveal complex relationships among design parameters. Sensitivity analyses provided valuable insights for optimizing tunnel designs, enhancing decision-making processes in geotechnical engineering. This study aims to equip engineers with practical tools for designing rectangular tunnels in real-world applications.
期刊介绍:
The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving.
The scope of the journal includes:
• Innovative computational strategies and numerical algorithms for large-scale engineering problems
• Analysis and simulation techniques and systems
• Model and mesh generation
• Control of the accuracy, stability and efficiency of computational process
• Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing)
• Advanced visualization techniques, virtual environments and prototyping
• Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations
• Application of object-oriented technology to engineering problems
• Intelligent human computer interfaces
• Design automation, multidisciplinary design and optimization
• CAD, CAE and integrated process and product development systems
• Quality and reliability.