Raul E. Gutierrez , Ivana Matanovic , Maciej P. Polak , Dane Morgan , Edl Schamiloglu
{"title":"Density functional theory calculations of the electronic structure and dielectric properties of metal oxide systems Al2O3, MgO, Cu2O, TiO2, WO3","authors":"Raul E. Gutierrez , Ivana Matanovic , Maciej P. Polak , Dane Morgan , Edl Schamiloglu","doi":"10.1016/j.elspec.2024.147512","DOIUrl":null,"url":null,"abstract":"<div><div>Density Functional Theory is utilized to study the electronic structure and dielectric properties of various metal oxide systems (Al<sub>2</sub>O<sub>3</sub>, MgO, Cu<sub>2</sub>O, TiO<sub>2</sub>, WO<sub>3</sub>) in comparison to their base metals (Al, Mg, Cu, Ti, and W). The properties studied include the density of states, energy band gap, Fermi energy, work function, ionization potential, and the frequency- and momentum-dependent energy loss function. This work provides high-quality first principles-calculated properties that can be further utilized in computational simulations which aim to model complicated electron inelastic scattering interactions in metal oxides and their corresponding metals. In general, properties of this nature might be of interest, but not limited, to those involved in the multipactor effect, magnetic confinement fusion, photovoltaics, charged particle accelerators, x-ray photoelectron spectroscopy, Auger electron spectroscopy, and photomultipliers.</div></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"278 ","pages":"Article 147512"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electron Spectroscopy and Related Phenomena","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368204824000951","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Density Functional Theory is utilized to study the electronic structure and dielectric properties of various metal oxide systems (Al2O3, MgO, Cu2O, TiO2, WO3) in comparison to their base metals (Al, Mg, Cu, Ti, and W). The properties studied include the density of states, energy band gap, Fermi energy, work function, ionization potential, and the frequency- and momentum-dependent energy loss function. This work provides high-quality first principles-calculated properties that can be further utilized in computational simulations which aim to model complicated electron inelastic scattering interactions in metal oxides and their corresponding metals. In general, properties of this nature might be of interest, but not limited, to those involved in the multipactor effect, magnetic confinement fusion, photovoltaics, charged particle accelerators, x-ray photoelectron spectroscopy, Auger electron spectroscopy, and photomultipliers.
期刊介绍:
The Journal of Electron Spectroscopy and Related Phenomena publishes experimental, theoretical and applied work in the field of electron spectroscopy and electronic structure, involving techniques which use high energy photons (>10 eV) or electrons as probes or detected particles in the investigation.