Approximate analytical/numerical solutions for the seismic response of rigid walls retaining a transversely isotropic poroelastic soil

IF 4 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Qingyuan Gong , Edmond V. Muho , Niki D. Beskou , Ying Zhou
{"title":"Approximate analytical/numerical solutions for the seismic response of rigid walls retaining a transversely isotropic poroelastic soil","authors":"Qingyuan Gong ,&nbsp;Edmond V. Muho ,&nbsp;Niki D. Beskou ,&nbsp;Ying Zhou","doi":"10.1016/j.advengsoft.2025.103876","DOIUrl":null,"url":null,"abstract":"<div><div>Three approximate analytical solutions for the problem of the seismic response of two rigid cantilever walls retaining a transversely isotropic poroelastic soil layer over bedrock are presented under conditions of plane strain and time harmonic ground motion. These approximate solutions come as a result of various reasonable simplifications concerning various response quantities of the problem, which reduce the complexity of the governing equations of motion. The method of solution in all the cases is the same with that used for obtaining the exact solution of the problem, i.e., expansion of response quantities in the frequency domain in terms of sine and cosine Fourier series along the horizontal direction and solution of the resulting system of ordinary differential equations with respect to the vertical coordinate in conjunction with the boundary conditions. The first approximate solution is obtained on the assumption of neglecting all the terms of the equations of motion associated with the fluid acceleration. The second approximate solution is obtained on the assumption that the fluid displacements are equal to the corresponding solid displacements. The third approximate solution is obtained as the sum of the second approximate solution for the whole domain plus a correction inside a boundary layer at the free soil. All three approximate solutions are compared with respect to their accuracy against the exact solution and useful conclusions pertaining the approximate range of the various parameters, like porosity, permeability and anisotropy indices, for minimization of the approximation error are drawn.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"202 ","pages":"Article 103876"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997825000146","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Three approximate analytical solutions for the problem of the seismic response of two rigid cantilever walls retaining a transversely isotropic poroelastic soil layer over bedrock are presented under conditions of plane strain and time harmonic ground motion. These approximate solutions come as a result of various reasonable simplifications concerning various response quantities of the problem, which reduce the complexity of the governing equations of motion. The method of solution in all the cases is the same with that used for obtaining the exact solution of the problem, i.e., expansion of response quantities in the frequency domain in terms of sine and cosine Fourier series along the horizontal direction and solution of the resulting system of ordinary differential equations with respect to the vertical coordinate in conjunction with the boundary conditions. The first approximate solution is obtained on the assumption of neglecting all the terms of the equations of motion associated with the fluid acceleration. The second approximate solution is obtained on the assumption that the fluid displacements are equal to the corresponding solid displacements. The third approximate solution is obtained as the sum of the second approximate solution for the whole domain plus a correction inside a boundary layer at the free soil. All three approximate solutions are compared with respect to their accuracy against the exact solution and useful conclusions pertaining the approximate range of the various parameters, like porosity, permeability and anisotropy indices, for minimization of the approximation error are drawn.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Engineering Software
Advances in Engineering Software 工程技术-计算机:跨学科应用
CiteScore
7.70
自引率
4.20%
发文量
169
审稿时长
37 days
期刊介绍: The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving. The scope of the journal includes: • Innovative computational strategies and numerical algorithms for large-scale engineering problems • Analysis and simulation techniques and systems • Model and mesh generation • Control of the accuracy, stability and efficiency of computational process • Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing) • Advanced visualization techniques, virtual environments and prototyping • Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations • Application of object-oriented technology to engineering problems • Intelligent human computer interfaces • Design automation, multidisciplinary design and optimization • CAD, CAE and integrated process and product development systems • Quality and reliability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信