Gerald J.K. Schaffar , Daniel Tscharnuter , Peter J. Imrich , Verena Maier-Kiener
{"title":"Extracting high-temperature stress–strain curves from a 1.2 µm silicon film using spherical nanoindentation","authors":"Gerald J.K. Schaffar , Daniel Tscharnuter , Peter J. Imrich , Verena Maier-Kiener","doi":"10.1016/j.tsf.2024.140597","DOIUrl":null,"url":null,"abstract":"<div><div>This work aims to apply modern spherical indentation methods to micromechanical testing at exceptionally high temperatures. Tests were performed on a polycrystalline silicon thin film. This film was deposited on a (100) monocrystalline silicon substrate with an intermediate Oxide layer, mimicking the structure of a silicon-gate technology field effect transistor. The indentation tests were conducted at 500 °C and 700 °C. The obtained flow curves are discussed regarding the microscopically observed deformation behavior and compared to literature data concerning the high-temperature plasticity of silicon. The results suggest kink-pair controlled, thermally activated glide of dislocations as the dominating plastic deformation mechanism for both investigated temperatures.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"809 ","pages":"Article 140597"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609024003985","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
This work aims to apply modern spherical indentation methods to micromechanical testing at exceptionally high temperatures. Tests were performed on a polycrystalline silicon thin film. This film was deposited on a (100) monocrystalline silicon substrate with an intermediate Oxide layer, mimicking the structure of a silicon-gate technology field effect transistor. The indentation tests were conducted at 500 °C and 700 °C. The obtained flow curves are discussed regarding the microscopically observed deformation behavior and compared to literature data concerning the high-temperature plasticity of silicon. The results suggest kink-pair controlled, thermally activated glide of dislocations as the dominating plastic deformation mechanism for both investigated temperatures.
期刊介绍:
Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.