{"title":"Radial partitioning with spectral penalty parameter selection in distributed optimization for power systems","authors":"Mehdi Karimi","doi":"10.1016/j.segan.2024.101613","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel concept of intelligent partitioning for group-based distributed optimization (DO) algorithms applied to optimal power flow (OPF) problems. Radial partitioning of the graph of a network is introduced as a systematic way to split a large-scale problem into more tractable sub-problems, which can potentially be solved efficiently with methods such as convex relaxations. Spectral parameter selection is introduced for group-based DO as a crucial hyper-parameter selection step in DO. A software package DiCARP is created, which is implemented in Python using the Pyomo optimization package. Through several numerical examples, we compare the proposed group-based algorithm to component-based approaches, evaluate our radial partitioning method against other partitioning strategies, and assess adaptive parameter selection in comparison to non-adaptive methods. The results highlight the critical role of effective partitioning and parameter selection in solving large-scale network optimization problems.</div></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"41 ","pages":"Article 101613"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724003436","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel concept of intelligent partitioning for group-based distributed optimization (DO) algorithms applied to optimal power flow (OPF) problems. Radial partitioning of the graph of a network is introduced as a systematic way to split a large-scale problem into more tractable sub-problems, which can potentially be solved efficiently with methods such as convex relaxations. Spectral parameter selection is introduced for group-based DO as a crucial hyper-parameter selection step in DO. A software package DiCARP is created, which is implemented in Python using the Pyomo optimization package. Through several numerical examples, we compare the proposed group-based algorithm to component-based approaches, evaluate our radial partitioning method against other partitioning strategies, and assess adaptive parameter selection in comparison to non-adaptive methods. The results highlight the critical role of effective partitioning and parameter selection in solving large-scale network optimization problems.
期刊介绍:
Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.