Electrodeposition and electrocatalytic performance of Pd-Ni alloy films from aqueous solutions for enhanced electrochemical hydrogen evolution

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
Wangping Wu, Zhengjie Xing, Liu Ju
{"title":"Electrodeposition and electrocatalytic performance of Pd-Ni alloy films from aqueous solutions for enhanced electrochemical hydrogen evolution","authors":"Wangping Wu,&nbsp;Zhengjie Xing,&nbsp;Liu Ju","doi":"10.1016/j.tsf.2024.140587","DOIUrl":null,"url":null,"abstract":"<div><div>Palladium-nickel (Pd-Ni) alloy films were electrodeposited on copper supports. The influence of deposition parameters on the surface morphology and chemical composition of the films was investigated. The surface morphology, chemical composition and elemental states of the films were characterized using scanning electron microscopy, energy-dispersive spectroscopy and X-ray photoelectron spectroscopy, respectively. The electrocatalytic performance of the selected films was evaluated through linear sweep voltammetry, electrochemical impedance spectroscopy and cyclic voltammetry. The results demonstrate that the deposition parameters significantly influenced the deposition rate of the films. The deposition rate increased with the current density, showing a change trend in initially increase and then decrease with the rise in bath temperature and deposition time. The particle size of the film increased with both current density and deposition time. Pd-Ni films exhibited the face-centered cubic structure of polycrystalline phase, the grain size and lattice parameters decreased as the Ni-content increased. Pd<sub>78</sub>Ni<sub>22</sub> film with many spherical particles exhibited good electrocatalytic activity in alkaline solution, requiring only the overpotential of 162 mV to achieve a current density of 10 mA·cm<sup>−</sup>², which demonstrated a low Tafel slope of 47.6 mV·dec<sup>−1</sup> and an exchange current density as high as 0.326 mA·cm<sup>−2</sup>.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"809 ","pages":"Article 140587"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609024003882","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

Palladium-nickel (Pd-Ni) alloy films were electrodeposited on copper supports. The influence of deposition parameters on the surface morphology and chemical composition of the films was investigated. The surface morphology, chemical composition and elemental states of the films were characterized using scanning electron microscopy, energy-dispersive spectroscopy and X-ray photoelectron spectroscopy, respectively. The electrocatalytic performance of the selected films was evaluated through linear sweep voltammetry, electrochemical impedance spectroscopy and cyclic voltammetry. The results demonstrate that the deposition parameters significantly influenced the deposition rate of the films. The deposition rate increased with the current density, showing a change trend in initially increase and then decrease with the rise in bath temperature and deposition time. The particle size of the film increased with both current density and deposition time. Pd-Ni films exhibited the face-centered cubic structure of polycrystalline phase, the grain size and lattice parameters decreased as the Ni-content increased. Pd78Ni22 film with many spherical particles exhibited good electrocatalytic activity in alkaline solution, requiring only the overpotential of 162 mV to achieve a current density of 10 mA·cm², which demonstrated a low Tafel slope of 47.6 mV·dec−1 and an exchange current density as high as 0.326 mA·cm−2.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thin Solid Films
Thin Solid Films 工程技术-材料科学:膜
CiteScore
4.00
自引率
4.80%
发文量
381
审稿时长
7.5 months
期刊介绍: Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信