Periodicity-based multi-dimensional interaction convolution network with multi-scale feature fusion for motor imagery EEG classification

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Yunshuo Dai, Xiao Deng, Xiuli Fu, Yixin Zhao
{"title":"Periodicity-based multi-dimensional interaction convolution network with multi-scale feature fusion for motor imagery EEG classification","authors":"Yunshuo Dai,&nbsp;Xiao Deng,&nbsp;Xiuli Fu,&nbsp;Yixin Zhao","doi":"10.1016/j.jneumeth.2024.110356","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The Motor Imagery (MI)-based Brain-Computer Interface (BCI) has vast potential in fields such as medical rehabilitation and control engineering. In recent years, MI decoding methods based on deep learning have gained extensive attention. However, capturing the complex dynamic changes in EEG signals remains a challenge, and the decoding performance still needs further improvement.</div></div><div><h3>New methods</h3><div>The paper proposes a novel method, Periodicity-based Multi-Dimensional Interaction Convolution Network with Multi-Scale Feature Fusion (PMD-MSNet), for MI-EEG signal classification. It converts 1D EEG signals into multi-period 2D tensors to capture intra-period and inter-period variations and enables cross-dimensional interaction based on periodic features. Subsequently, parallel multi-scale convolution is utilized to adaptively extract temporal, frequency, and time-frequency features.</div></div><div><h3>Results</h3><div>Experimental results on the BCI IV-2a dataset demonstrate that the PMD-MSNet model achieves a classification accuracy of 82.25 % on average and a kappa value of 0.763, which significantly outperforms seven other deep learning-based EEG decoding models. The model attained the highest classification accuracy and kappa value among the seven subjects, showcasing its superior performance and robustness.</div></div><div><h3>Conclusions</h3><div>The PMD-MSNet model incorporates periodic features, multi-dimensional interaction mechanisms, multi-scale convolutions to achieve efficient feature extraction and classification of EEG signals, significantly enhancing the performance of MI classification tasks.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"415 ","pages":"Article 110356"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024003017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The Motor Imagery (MI)-based Brain-Computer Interface (BCI) has vast potential in fields such as medical rehabilitation and control engineering. In recent years, MI decoding methods based on deep learning have gained extensive attention. However, capturing the complex dynamic changes in EEG signals remains a challenge, and the decoding performance still needs further improvement.

New methods

The paper proposes a novel method, Periodicity-based Multi-Dimensional Interaction Convolution Network with Multi-Scale Feature Fusion (PMD-MSNet), for MI-EEG signal classification. It converts 1D EEG signals into multi-period 2D tensors to capture intra-period and inter-period variations and enables cross-dimensional interaction based on periodic features. Subsequently, parallel multi-scale convolution is utilized to adaptively extract temporal, frequency, and time-frequency features.

Results

Experimental results on the BCI IV-2a dataset demonstrate that the PMD-MSNet model achieves a classification accuracy of 82.25 % on average and a kappa value of 0.763, which significantly outperforms seven other deep learning-based EEG decoding models. The model attained the highest classification accuracy and kappa value among the seven subjects, showcasing its superior performance and robustness.

Conclusions

The PMD-MSNet model incorporates periodic features, multi-dimensional interaction mechanisms, multi-scale convolutions to achieve efficient feature extraction and classification of EEG signals, significantly enhancing the performance of MI classification tasks.
基于周期的多尺度特征融合多维交互卷积网络运动意象脑电分类
基于运动图像(MI)的脑机接口(BCI)在医疗康复和控制工程等领域具有广阔的应用前景。近年来,基于深度学习的MI解码方法得到了广泛的关注。然而,捕捉脑电图信号中复杂的动态变化仍然是一个挑战,解码性能有待进一步提高。提出了一种基于周期的多尺度特征融合多维交互卷积网络(PMD-MSNet)的脑电信号分类新方法。它将一维脑电图信号转换成多周期二维张量,捕捉周期内和周期间的变化,实现基于周期特征的跨维交互。随后,利用并行多尺度卷积自适应提取时间、频率和时频特征。结果在BCI IV-2a数据集上的实验结果表明,PMD-MSNet模型的分类准确率平均为82.25 %,kappa值为0.763,显著优于其他7种基于深度学习的脑电解码模型。该模型的分类精度和kappa值在7个科目中最高,显示出其优越的性能和鲁棒性。结论PMD-MSNet模型结合周期性特征、多维交互机制和多尺度卷积,实现了高效的脑电信号特征提取和分类,显著提高了MI分类任务的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信