{"title":"Development of novel process for production of high-protein soybean semolina and its functionality","authors":"T.V. Sreechithra, Suresh D. Sakhare","doi":"10.1016/j.foodres.2025.115865","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to develop a semolina roller milling process for differently processed soybeans and investigate the physicochemical, functional, and pasting properties of the resulting milled products. Soybeans underwent pre-milling treatments: roasting (RT), germination (GT), and hydrothermal processing (HT) before being roller-milled to produce fine semolina (FS), coarse semolina (CS), husk (H), and flour (F) fractions. The results indicated that FS yield was highest for GT (47.21%) and lowest for HT (42.52%), while CS yield was highest for control (31.83%) and lowest for GT (26.79%). Nutrients were unevenly distributed among the milled products, with ash, protein, and total dietary fiber concentrated in the CS across all treatments. Both water and oil holding capacities were highest for HT and lowest for GT. Pasting properties, including peak viscosity, hot paste viscosity, and cold paste viscosity, were highest for control and lowest for HT and RT soybean. These findings demonstrate that soybeans can produce uniformly sized semolina under standardized roller milling parameters. This emerging process will provide a new possibility for utilizing protein-rich soybeans. Utilizing soybean semolina as an ingredient could enhance the use of protein-rich soybeans in daily diets and open new opportunities for the soy-processing industry.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"203 ","pages":"Article 115865"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996925002029","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to develop a semolina roller milling process for differently processed soybeans and investigate the physicochemical, functional, and pasting properties of the resulting milled products. Soybeans underwent pre-milling treatments: roasting (RT), germination (GT), and hydrothermal processing (HT) before being roller-milled to produce fine semolina (FS), coarse semolina (CS), husk (H), and flour (F) fractions. The results indicated that FS yield was highest for GT (47.21%) and lowest for HT (42.52%), while CS yield was highest for control (31.83%) and lowest for GT (26.79%). Nutrients were unevenly distributed among the milled products, with ash, protein, and total dietary fiber concentrated in the CS across all treatments. Both water and oil holding capacities were highest for HT and lowest for GT. Pasting properties, including peak viscosity, hot paste viscosity, and cold paste viscosity, were highest for control and lowest for HT and RT soybean. These findings demonstrate that soybeans can produce uniformly sized semolina under standardized roller milling parameters. This emerging process will provide a new possibility for utilizing protein-rich soybeans. Utilizing soybean semolina as an ingredient could enhance the use of protein-rich soybeans in daily diets and open new opportunities for the soy-processing industry.
期刊介绍:
Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.