Jin Qian , Panpan Lv , Guanglong Ge , Siming Wang , Jinfeng Lin , Fei Yan , Bo Shen , Zhenxiang Cheng , Jiwei Zhai
{"title":"Diffusosphere engineering in BNT-based multilayer heterogeneous film capacitors for high performance","authors":"Jin Qian , Panpan Lv , Guanglong Ge , Siming Wang , Jinfeng Lin , Fei Yan , Bo Shen , Zhenxiang Cheng , Jiwei Zhai","doi":"10.1016/j.jmat.2024.100931","DOIUrl":null,"url":null,"abstract":"<div><div>Combining layers with high breakdown resistance and high polarization is a promising approach for designing dielectric capacitors with high energy density and efficiency. However, such combinations often accompany strong interfacial polarization, magnification of local electric fields, leading to premature breakdown. This work addresses this issue <em>via</em> controlled formation of diffusospheres. We constructed multilayer heterogeneous films using two Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub> (BNT)-based substances with high breakdown resistance and high polarization properties. Experimental results and finite element simulations demonstrate that the energy storage capacity of these films effectively harnesses the advantages of both phases. Notably, the interface polarization is minimal. Instead, a solid solution-like diffusosphere, formed by the mutual diffusion of ions between the two phases, plays a crucial role. The diffusosphere acts as a transition zone, mitigating charge aggregation at the interfaces and optimizing the relaxor and breakdown characteristics of the capacitor. With six diffusospheres, the multilayer heterogeneous capacitor achieves a recoverable energy storage density of 94 J/cm<sup>3</sup>, a significant advancement in BNT-based energy storage films. This work proposes and validates the concept of diffusospheres and their role in reducing interfacial polarization in multilayer heterogeneous films, enhancing the understanding of heterogeneous composite structures and advancing the field of dielectric energy storage.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100931"},"PeriodicalIF":8.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824001709","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Combining layers with high breakdown resistance and high polarization is a promising approach for designing dielectric capacitors with high energy density and efficiency. However, such combinations often accompany strong interfacial polarization, magnification of local electric fields, leading to premature breakdown. This work addresses this issue via controlled formation of diffusospheres. We constructed multilayer heterogeneous films using two Bi0.5Na0.5TiO3 (BNT)-based substances with high breakdown resistance and high polarization properties. Experimental results and finite element simulations demonstrate that the energy storage capacity of these films effectively harnesses the advantages of both phases. Notably, the interface polarization is minimal. Instead, a solid solution-like diffusosphere, formed by the mutual diffusion of ions between the two phases, plays a crucial role. The diffusosphere acts as a transition zone, mitigating charge aggregation at the interfaces and optimizing the relaxor and breakdown characteristics of the capacitor. With six diffusospheres, the multilayer heterogeneous capacitor achieves a recoverable energy storage density of 94 J/cm3, a significant advancement in BNT-based energy storage films. This work proposes and validates the concept of diffusospheres and their role in reducing interfacial polarization in multilayer heterogeneous films, enhancing the understanding of heterogeneous composite structures and advancing the field of dielectric energy storage.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.