Shuhuan Wang , Shuangqingyue Zhang , Lingmin Liao , Chunquan Zhang , Debin Xu , Long Huang , He Ma
{"title":"DP-CLAM: A weakly supervised benign-malignant classification study based on dual-angle scanning ultrasound images of thyroid nodules","authors":"Shuhuan Wang , Shuangqingyue Zhang , Lingmin Liao , Chunquan Zhang , Debin Xu , Long Huang , He Ma","doi":"10.1016/j.medengphy.2025.104288","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a two-stage task weakly supervised learning algorithm is proposed. It accurately achieved patient-level classification task of benign and malignant thyroid nodules based on ultrasound images from two scanning angles: long axis and short axis of the thyroid site. In the first stage, 68,208 ultrasound scanning images of 588 patients are used to train the underlying classification model. In the second stage, feature vectors of ultrasound images with dual scan angles are extracted using the classification model in the first stage. Then the feature vectors are assigned to position sequences in the order of visual reception by the physician. Finally, the location decision is made through a weakly supervised learning approach. Combined with the dual-angle difference information carried in the overall features, our method accurately achieved benign and malignant classification of thyroid nodules at the patient level. An accuracy of 93.81 % for benign and malignant classification of patients was obtained in our test set. The accuracy of benign and malignant classification of patients with thyroid nodules is improved by our weakly supervised learning method based on a two-stage classification task. It also reduced the pressure of imaging physicians in diagnosing a large number of images. In the clinical auxiliary diagnosis, it provides an effective reference for the timely determination of thyroid nodule patients.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"136 ","pages":"Article 104288"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453325000074","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a two-stage task weakly supervised learning algorithm is proposed. It accurately achieved patient-level classification task of benign and malignant thyroid nodules based on ultrasound images from two scanning angles: long axis and short axis of the thyroid site. In the first stage, 68,208 ultrasound scanning images of 588 patients are used to train the underlying classification model. In the second stage, feature vectors of ultrasound images with dual scan angles are extracted using the classification model in the first stage. Then the feature vectors are assigned to position sequences in the order of visual reception by the physician. Finally, the location decision is made through a weakly supervised learning approach. Combined with the dual-angle difference information carried in the overall features, our method accurately achieved benign and malignant classification of thyroid nodules at the patient level. An accuracy of 93.81 % for benign and malignant classification of patients was obtained in our test set. The accuracy of benign and malignant classification of patients with thyroid nodules is improved by our weakly supervised learning method based on a two-stage classification task. It also reduced the pressure of imaging physicians in diagnosing a large number of images. In the clinical auxiliary diagnosis, it provides an effective reference for the timely determination of thyroid nodule patients.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.