Mechanotransduction and inflammation: An updated comprehensive representation

Vennila Suriyagandhi , Ying Ma , Veronica Paparozzi , Tiziana Guarnieri , Biagio Di Pietro , Giovanna Maria Dimitri , Paolo Tieri , Claudia Sala , Darong Lai , Christine Nardini
{"title":"Mechanotransduction and inflammation: An updated comprehensive representation","authors":"Vennila Suriyagandhi ,&nbsp;Ying Ma ,&nbsp;Veronica Paparozzi ,&nbsp;Tiziana Guarnieri ,&nbsp;Biagio Di Pietro ,&nbsp;Giovanna Maria Dimitri ,&nbsp;Paolo Tieri ,&nbsp;Claudia Sala ,&nbsp;Darong Lai ,&nbsp;Christine Nardini","doi":"10.1016/j.mbm.2024.100112","DOIUrl":null,"url":null,"abstract":"<div><div>Mechanotransduction is the process that enables the conversion of mechanical cues into biochemical signaling. While all our cells are well known to be sensitive to such stimuli, the details of the systemic interaction between mechanical input and inflammation are not well integrated. Often, indeed, they are considered and studied in relatively compartmentalized areas, and we therefore argue here that to understand the relationship of mechanical stimuli with inflammation – with a high translational potential - it is crucial to offer and analyze a unified view of mechanotransduction. We therefore present here pathway representation, recollected with the standard systems biology markup language (SBML) and explored with network biology approaches, offering RAC1 as an exemplar and emerging molecule with potential for medical translation.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 1","pages":"Article 100112"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907024000755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanotransduction is the process that enables the conversion of mechanical cues into biochemical signaling. While all our cells are well known to be sensitive to such stimuli, the details of the systemic interaction between mechanical input and inflammation are not well integrated. Often, indeed, they are considered and studied in relatively compartmentalized areas, and we therefore argue here that to understand the relationship of mechanical stimuli with inflammation – with a high translational potential - it is crucial to offer and analyze a unified view of mechanotransduction. We therefore present here pathway representation, recollected with the standard systems biology markup language (SBML) and explored with network biology approaches, offering RAC1 as an exemplar and emerging molecule with potential for medical translation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信