{"title":"On the local dimensions of solutions of Brent equations","authors":"Xin Li , Yixin Bao , Liping Zhang","doi":"10.1016/j.laa.2024.12.011","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>〈</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>〉</mo></math></span> be the matrix multiplication tensor. The solution set of Brent equations corresponds to the tensor decompositions of <span><math><mo>〈</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>〉</mo></math></span>. We study the local dimensions of solutions of the Brent equations over the field of complex numbers. The rank of Jacobian matrix of Brent equations provides an upper bound of the local dimension, which is well-known. We calculate the ranks for some typical known solutions, which are provided in the databases <span><span>[16]</span></span> and <span><span>[17]</span></span>. We show that the automorphism group of the natural algorithm computing <span><math><mo>〈</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>〉</mo></math></span> is <span><math><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo><mo>⋊</mo><mi>Q</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> are groups of generalized permutation matrices, <span><math><mi>Q</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> is a subgroup of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> depending on <em>m</em>, <em>n</em> and <em>p</em>. For other algorithms computing <span><math><mo>〈</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>〉</mo></math></span>, some conditions are given, which imply the corresponding automorphism groups are isomorphic to subgroups of <span><math><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo><mo>⋊</mo><mi>Q</mi><mo>(</mo><mi>m</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span>. So under these conditions, <span><math><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>m</mi><mo>−</mo><mi>n</mi><mo>−</mo><mi>p</mi><mo>−</mo><mn>3</mn></math></span> is a lower bound for the local dimensions of solutions of Brent equations. Moreover, the gap between the lower and upper bounds is discussed.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 489-512"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952400483X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the matrix multiplication tensor. The solution set of Brent equations corresponds to the tensor decompositions of . We study the local dimensions of solutions of the Brent equations over the field of complex numbers. The rank of Jacobian matrix of Brent equations provides an upper bound of the local dimension, which is well-known. We calculate the ranks for some typical known solutions, which are provided in the databases [16] and [17]. We show that the automorphism group of the natural algorithm computing is , where , and are groups of generalized permutation matrices, is a subgroup of depending on m, n and p. For other algorithms computing , some conditions are given, which imply the corresponding automorphism groups are isomorphic to subgroups of . So under these conditions, is a lower bound for the local dimensions of solutions of Brent equations. Moreover, the gap between the lower and upper bounds is discussed.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.