{"title":"The maximum spectral radius of P2k+1-free graphs of given size","authors":"Benju Wang, Bing Wang","doi":"10.1016/j.laa.2024.12.008","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a Brualdi-Hoffman-Turán problem for graphs without path of given length. Denote by <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> the graph obtained from a cycle <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> by linking two vertices of distance two in the cycle. Recently, Li, Zhai and Shu showed that for <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span> and a graph <em>G</em> of size <span><math><mi>m</mi><mo>≥</mo><mn>16</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>, if <em>G</em> is <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-free or <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-free, then the maximum adjacency spectral radius <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mn>4</mn><mi>m</mi><mo>−</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></msqrt><mo>)</mo></math></span>. It follows immediately that if <em>G</em> is <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free of size <span><math><mi>m</mi><mo>≥</mo><mn>16</mn><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>, then <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mn>4</mn><mi>m</mi><mo>−</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></msqrt><mo>)</mo></math></span>. However, the upper bound is not sharp. We consider the case for <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graphs and obtain the following result: Let <span><math><mi>k</mi><mo>≥</mo><mn>4</mn></math></span> and <em>G</em> be a <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>-free graph of size <span><math><mi>m</mi><mo>≥</mo><mn>4</mn><msup><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>4</mn></mrow></msup></math></span>. Then <span><math><mi>ρ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>(</mo><mi>k</mi><mo>−</mo><mn>2</mn><mo>+</mo><msqrt><mrow><mn>4</mn><mi>m</mi><mo>−</mo><msup><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></msqrt><mo>)</mo></math></span>, and equality holds if and only if <span><math><mi>G</mi><mo>≅</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mi>∇</mi><mo>(</mo><mfrac><mrow><mi>m</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mi>k</mi><mo>−</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 302-314"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004804","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider a Brualdi-Hoffman-Turán problem for graphs without path of given length. Denote by the graph obtained from a cycle by linking two vertices of distance two in the cycle. Recently, Li, Zhai and Shu showed that for and a graph G of size , if G is -free or -free, then the maximum adjacency spectral radius . It follows immediately that if G is -free of size , then . However, the upper bound is not sharp. We consider the case for -free graphs and obtain the following result: Let and G be a -free graph of size . Then , and equality holds if and only if .
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.