Symmetric doubly stochastic inverse eigenvalue problem for odd sizes

IF 1 3区 数学 Q1 MATHEMATICS
Mohadese Raeisi Sarkhoni , Hossein Momenaee Kermani , Azim Rivaz
{"title":"Symmetric doubly stochastic inverse eigenvalue problem for odd sizes","authors":"Mohadese Raeisi Sarkhoni ,&nbsp;Hossein Momenaee Kermani ,&nbsp;Azim Rivaz","doi":"10.1016/j.laa.2024.12.020","DOIUrl":null,"url":null,"abstract":"<div><div>The symmetric doubly stochastic inverse eigenvalue problem seeks to determine the necessary and sufficient conditions for a real list of eigenvalues to be realized by a symmetric doubly stochastic matrix. Nader et al. (2019) <span><span>[15]</span></span>, established that for odd integers <em>n</em> a list of the form <span><math><mi>σ</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span> with <span><math><mo>|</mo><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>&lt;</mo><mn>1</mn></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>2</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> cannot be the spectrum of any <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> doubly stochastic matrix. This implies that the list <span><math><mi>σ</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>0</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>)</mo></math></span> is also unrealizable.</div><div>This paper extends these findings by proving that for odd <em>n</em> and <span><math><msub><mrow><mi>λ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>∈</mo><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>−</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span>, the list <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>λ</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></mrow></msub><mo>)</mo></math></span> cannot be the spectrum of a symmetric doubly stochastic matrix. We demonstrate that for odd <em>n</em> the list <span><math><mi>σ</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>0</mn><mo>,</mo><mo>−</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span>, is indeed realizable as the spectrum of a symmetric doubly stochastic matrix.</div><div>Furthermore, we utilize our methodology to derive new sufficient conditions for the existence of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> symmetric doubly stochastic matrices with a prescribed list of eigenvalues. This leads to a condition for the existence of symmetric doubly stochastic matrices with a normalized Suleimanova spectrum. The paper concludes with additional partial results and illustrative examples.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 594-607"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004920","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The symmetric doubly stochastic inverse eigenvalue problem seeks to determine the necessary and sufficient conditions for a real list of eigenvalues to be realized by a symmetric doubly stochastic matrix. Nader et al. (2019) [15], established that for odd integers n a list of the form σ=(1,λ2,λ3,...,λn1,1) with |λi|<1 for i=2,...,n1 cannot be the spectrum of any n×n doubly stochastic matrix. This implies that the list σ=(1,0,...,0,1) is also unrealizable.
This paper extends these findings by proving that for odd n and λn[1,n1n), the list (1,0,...,0,λn) cannot be the spectrum of a symmetric doubly stochastic matrix. We demonstrate that for odd n the list σ=(1,0,...,0,n1n), is indeed realizable as the spectrum of a symmetric doubly stochastic matrix.
Furthermore, we utilize our methodology to derive new sufficient conditions for the existence of n×n symmetric doubly stochastic matrices with a prescribed list of eigenvalues. This leads to a condition for the existence of symmetric doubly stochastic matrices with a normalized Suleimanova spectrum. The paper concludes with additional partial results and illustrative examples.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信