{"title":"Tridiagonal pairs of Krawtchouk type arising from finite-dimensional irreducible so4-modules","authors":"John Vincent S. Morales, Aaron Pagaygay","doi":"10.1016/j.laa.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>F</mi></math></span> be an algebraically closed field with <span><math><mi>char</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. The special linear algebra <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is the <span><math><mi>F</mi></math></span>-Lie algebra with Chevalley basis <span><math><mo>{</mo><mi>e</mi><mo>,</mo><mi>h</mi><mo>,</mo><mi>f</mi><mo>}</mo></math></span>. Since the special orthogonal algebra <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> is isomorphic to <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> is viewed as the <span><math><mi>F</mi></math></span>-Lie algebra with Chevalley basis <span><math><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></math></span>. In <span><span>[21, Lemma 3.1]</span></span>, there is an automorphism <span><math><mo>⁎</mo><mo>:</mo><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>→</mo><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> so that <span><math><mo>{</mo><msubsup><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>}</mo></math></span> is another Chevalley basis of <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. In <span><span>[21, Section 5]</span></span>, there is a simple construction of a finite-dimensional irreducible <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-module <em>V</em> on which <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> acts by derivation. In this paper, we construct four tridiagonal pairs (or TD pairs) on <em>V</em> via the action of the Chevalley bases of <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. We prove that these TD pairs are of Krawtchouk type and are not necessarily pairwise isomorphic based on their associated Drinfel'd polynomials. Consequently, we display four Lie algebra homomorphisms from the tetrahedron algebra ⊠ to <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> and via these homomorphisms, we describe how the generators of ⊠ act on <em>V</em>. Finally, we show that the irreducible <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-module <em>V</em> is isomorphic to a tensor product of two evaluation modules in view of <span><span>[16, Definition 4.11]</span></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 315-336"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004737","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be an algebraically closed field with . The special linear algebra is the -Lie algebra with Chevalley basis . Since the special orthogonal algebra is isomorphic to , is viewed as the -Lie algebra with Chevalley basis . In [21, Lemma 3.1], there is an automorphism so that is another Chevalley basis of . In [21, Section 5], there is a simple construction of a finite-dimensional irreducible -module V on which acts by derivation. In this paper, we construct four tridiagonal pairs (or TD pairs) on V via the action of the Chevalley bases of . We prove that these TD pairs are of Krawtchouk type and are not necessarily pairwise isomorphic based on their associated Drinfel'd polynomials. Consequently, we display four Lie algebra homomorphisms from the tetrahedron algebra ⊠ to and via these homomorphisms, we describe how the generators of ⊠ act on V. Finally, we show that the irreducible -module V is isomorphic to a tensor product of two evaluation modules in view of [16, Definition 4.11].
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.