Tridiagonal pairs of Krawtchouk type arising from finite-dimensional irreducible so4-modules

IF 1 3区 数学 Q1 MATHEMATICS
John Vincent S. Morales, Aaron Pagaygay
{"title":"Tridiagonal pairs of Krawtchouk type arising from finite-dimensional irreducible so4-modules","authors":"John Vincent S. Morales,&nbsp;Aaron Pagaygay","doi":"10.1016/j.laa.2024.12.001","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>F</mi></math></span> be an algebraically closed field with <span><math><mi>char</mi><mo>(</mo><mi>F</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. The special linear algebra <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is the <span><math><mi>F</mi></math></span>-Lie algebra with Chevalley basis <span><math><mo>{</mo><mi>e</mi><mo>,</mo><mi>h</mi><mo>,</mo><mi>f</mi><mo>}</mo></math></span>. Since the special orthogonal algebra <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> is isomorphic to <span><math><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊕</mo><msub><mrow><mi>sl</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> is viewed as the <span><math><mi>F</mi></math></span>-Lie algebra with Chevalley basis <span><math><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo></math></span>. In <span><span>[21, Lemma 3.1]</span></span>, there is an automorphism <span><math><mo>⁎</mo><mo>:</mo><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>→</mo><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> so that <span><math><mo>{</mo><msubsup><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>}</mo></math></span> is another Chevalley basis of <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. In <span><span>[21, Section 5]</span></span>, there is a simple construction of a finite-dimensional irreducible <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-module <em>V</em> on which <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> acts by derivation. In this paper, we construct four tridiagonal pairs (or TD pairs) on <em>V</em> via the action of the Chevalley bases of <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. We prove that these TD pairs are of Krawtchouk type and are not necessarily pairwise isomorphic based on their associated Drinfel'd polynomials. Consequently, we display four Lie algebra homomorphisms from the tetrahedron algebra ⊠ to <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> and via these homomorphisms, we describe how the generators of ⊠ act on <em>V</em>. Finally, we show that the irreducible <span><math><msub><mrow><mi>so</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-module <em>V</em> is isomorphic to a tensor product of two evaluation modules in view of <span><span>[16, Definition 4.11]</span></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 315-336"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004737","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let F be an algebraically closed field with char(F)=0. The special linear algebra sl2 is the F-Lie algebra with Chevalley basis {e,h,f}. Since the special orthogonal algebra so4 is isomorphic to sl2sl2, so4 is viewed as the F-Lie algebra with Chevalley basis {e1,h1,f1,e2,h2,f2}. In [21, Lemma 3.1], there is an automorphism :so4so4 so that {e1,h1,f1,e2,h2,f2} is another Chevalley basis of so4. In [21, Section 5], there is a simple construction of a finite-dimensional irreducible so4-module V on which so4 acts by derivation. In this paper, we construct four tridiagonal pairs (or TD pairs) on V via the action of the Chevalley bases of so4. We prove that these TD pairs are of Krawtchouk type and are not necessarily pairwise isomorphic based on their associated Drinfel'd polynomials. Consequently, we display four Lie algebra homomorphisms from the tetrahedron algebra ⊠ to so4 and via these homomorphisms, we describe how the generators of ⊠ act on V. Finally, we show that the irreducible so4-module V is isomorphic to a tensor product of two evaluation modules in view of [16, Definition 4.11].
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信