{"title":"Two classes of graphs determined by the signless Laplacian spectrum","authors":"Jiachang Ye , Muhuo Liu , Zoran Stanić","doi":"10.1016/j.laa.2024.10.029","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> denote the complete graph, the cycle and the path with <em>q</em> vertices, respectively. We use <span><math><mi>Q</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> to denote the signless Laplacian matrix of a simple undirected graph <em>G</em>, and say that <em>G</em> is determined by its signless Laplacian spectrum (for short, <em>G</em> is <em>DQS</em>) if there is no other non-isomorphic graph with the same signless Laplacian spectrum. In this paper, we prove the following results:<ul><li><span>(1)</span><span><div>If <span><math><mi>n</mi><mo>≥</mo><mn>21</mn></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>q</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, then <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>∪</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> is <em>DQS</em>;</div></span></li><li><span>(2)</span><span><div>If <span><math><mi>n</mi><mo>≥</mo><mn>21</mn></math></span> and <span><math><mn>3</mn><mo>≤</mo><mi>q</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, then <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>∪</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> is <em>DQS</em> if and only if <span><math><mi>q</mi><mo>≠</mo><mn>3</mn></math></span>,</div></span></li></ul> where ∪ and ∨ stand for the disjoint union and the join of two graphs, respectively. Moreover, for <span><math><mi>q</mi><mo>=</mo><mn>3</mn></math></span> in <span><span>(2)</span></span> we identify <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>∪</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>5</mn><mo>)</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> as the unique graph sharing the signless Laplacian spectrum with the graph under consideration. Our results extend results of [Czechoslovak Math. J. 62 (2012) 1117–1134] and [Czechoslovak Math. J. 70 (2020) 21–31], where the authors showed that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∨</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> are <em>DQS</em>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"708 ","pages":"Pages 159-172"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004580","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let , and denote the complete graph, the cycle and the path with q vertices, respectively. We use to denote the signless Laplacian matrix of a simple undirected graph G, and say that G is determined by its signless Laplacian spectrum (for short, G is DQS) if there is no other non-isomorphic graph with the same signless Laplacian spectrum. In this paper, we prove the following results:
(1)
If and , then is DQS;
(2)
If and , then is DQS if and only if ,
where ∪ and ∨ stand for the disjoint union and the join of two graphs, respectively. Moreover, for in (2) we identify as the unique graph sharing the signless Laplacian spectrum with the graph under consideration. Our results extend results of [Czechoslovak Math. J. 62 (2012) 1117–1134] and [Czechoslovak Math. J. 70 (2020) 21–31], where the authors showed that and are DQS.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.