{"title":"Random antimicrobial peptide mixtures as non-antibiotic antimicrobial agents for cultured meat industry","authors":"Idan Yakir , Einav Cohen , Sharon Schlesinger , Zvi Hayouka","doi":"10.1016/j.fochms.2025.100240","DOIUrl":null,"url":null,"abstract":"<div><div>Antibiotics, commonly used in cell culture studies to prevent microbial contamination, cannot be employed in Cultured meat (CM) due to potential residues in the final food products. Hence, there is an urgent need to develop novel and safe non-antibiotic antimicrobial agents. Here, we investigated the potential of random antimicrobial peptide mixtures (RPMs) as non-antibiotic antimicrobial agents. RPMs are synthetic peptide cocktails that have previously shown strong and broad antimicrobial activity; however, their use in cell culture media and their effect on mammalian cells have not yet been explored. Here we show that RPMs had no significant impact on mesenchymal stem cells (MSCs) at concentrations that effectively inhibit bacterial growth. RPMs displayed strong bactericidal activity against Gram-positive bacteria, achieving a 6-log reduction of <em>L. monocytogenes</em> in cell culture medium without any cytotoxicity. Additionally, RPMs showed a low occurrence of resistance development with no significant resistance developed in compared with a combination of penicillin and streptomycin. Moreover, LK20 mixture was rapidly digested in a simulated digestion model. Our results indicate that RPMs have great potential to serve as safe and effective non antibiotic antimicrobial agents in cultured meat industry.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"10 ","pages":"Article 100240"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566225000012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotics, commonly used in cell culture studies to prevent microbial contamination, cannot be employed in Cultured meat (CM) due to potential residues in the final food products. Hence, there is an urgent need to develop novel and safe non-antibiotic antimicrobial agents. Here, we investigated the potential of random antimicrobial peptide mixtures (RPMs) as non-antibiotic antimicrobial agents. RPMs are synthetic peptide cocktails that have previously shown strong and broad antimicrobial activity; however, their use in cell culture media and their effect on mammalian cells have not yet been explored. Here we show that RPMs had no significant impact on mesenchymal stem cells (MSCs) at concentrations that effectively inhibit bacterial growth. RPMs displayed strong bactericidal activity against Gram-positive bacteria, achieving a 6-log reduction of L. monocytogenes in cell culture medium without any cytotoxicity. Additionally, RPMs showed a low occurrence of resistance development with no significant resistance developed in compared with a combination of penicillin and streptomycin. Moreover, LK20 mixture was rapidly digested in a simulated digestion model. Our results indicate that RPMs have great potential to serve as safe and effective non antibiotic antimicrobial agents in cultured meat industry.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.