{"title":"Revealing plasmonic TiN films with low power radio-frequency magnetron sputtering technique","authors":"Atanu Samanta , Ananya Chattaraj , Sachin Srivastava , Lukasz Walczak , Archna Sagdeo , Aloke Kanjilal","doi":"10.1016/j.tsf.2025.140603","DOIUrl":null,"url":null,"abstract":"<div><div>Growth of plasmonic titanium nitride (TiN) film has recently attracted a considerable interest for various applications ranging from biosensing to optoelectronic devices. A room temperature deposition of high-quality TiN films by radio-frequency magnetron sputtering method with 60 W power is presented. Synchrotron based X-ray diffraction confirms the cubic phase formation in these films, while X-ray photoelectron spectroscopy (XPS) supports the existence of Ti-N bonds along with the presence of TiN<sub>x</sub>O<sub>y</sub>. Atomic force microscopy and scanning electron microscopy further suggest the development of a smooth surface. Optical characterisations by ellipsometry and ultraviolet-visible spectroscopy together establish the plasmonic behaviour of TiN films. A substantial negative value in the real component of the dielectric function is determined, where the partially filled Ti-3<em>d</em> orbitals near the Fermi level is evidenced from the valence band XPS analysis. The observed results therefore confirm that the plasmonic behaviour of the present TiN films is auspicious for (opto)electronic applications.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"811 ","pages":"Article 140603"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609025000045","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Growth of plasmonic titanium nitride (TiN) film has recently attracted a considerable interest for various applications ranging from biosensing to optoelectronic devices. A room temperature deposition of high-quality TiN films by radio-frequency magnetron sputtering method with 60 W power is presented. Synchrotron based X-ray diffraction confirms the cubic phase formation in these films, while X-ray photoelectron spectroscopy (XPS) supports the existence of Ti-N bonds along with the presence of TiNxOy. Atomic force microscopy and scanning electron microscopy further suggest the development of a smooth surface. Optical characterisations by ellipsometry and ultraviolet-visible spectroscopy together establish the plasmonic behaviour of TiN films. A substantial negative value in the real component of the dielectric function is determined, where the partially filled Ti-3d orbitals near the Fermi level is evidenced from the valence band XPS analysis. The observed results therefore confirm that the plasmonic behaviour of the present TiN films is auspicious for (opto)electronic applications.
期刊介绍:
Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.