Rapid prototyping of 3D microstructures: A simplified grayscale lithography encoding method using blender

IF 2.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Fabrício Frizera Borghi , Mohammed Bendimerad , Marie-Ly Chapon , Tatiana Petithory , Laurent Vonna , Laurent Pieuchot
{"title":"Rapid prototyping of 3D microstructures: A simplified grayscale lithography encoding method using blender","authors":"Fabrício Frizera Borghi ,&nbsp;Mohammed Bendimerad ,&nbsp;Marie-Ly Chapon ,&nbsp;Tatiana Petithory ,&nbsp;Laurent Vonna ,&nbsp;Laurent Pieuchot","doi":"10.1016/j.mne.2024.100294","DOIUrl":null,"url":null,"abstract":"<div><div>The democratization of fabrication equipment has spurred recent interest in maskless grayscale lithography for both 2D and 3D microfabrication. However, the design of suitable template images remains a challenge. This work presents a simplified method for encoding 3D objects into grayscale image files optimized for grayscale lithography. Leveraging the widely used and open-source 3D modeling software Blender, we developed a robust approach to convert geometric heights into grayscale levels and generate image files through top-view rendering. Our method accurately reproduced the overall shape of simple structures like stairs and ramps compared to the original designs. We extended this approach to complex 3D sinusoidal surfaces, achieving similar results. Given the increasing accessibility and user-friendliness of digital rendering tools, this study offers a promising strategy for rapid prototyping of initial designs with minimal effort.</div></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"26 ","pages":"Article 100294"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007224000571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The democratization of fabrication equipment has spurred recent interest in maskless grayscale lithography for both 2D and 3D microfabrication. However, the design of suitable template images remains a challenge. This work presents a simplified method for encoding 3D objects into grayscale image files optimized for grayscale lithography. Leveraging the widely used and open-source 3D modeling software Blender, we developed a robust approach to convert geometric heights into grayscale levels and generate image files through top-view rendering. Our method accurately reproduced the overall shape of simple structures like stairs and ramps compared to the original designs. We extended this approach to complex 3D sinusoidal surfaces, achieving similar results. Given the increasing accessibility and user-friendliness of digital rendering tools, this study offers a promising strategy for rapid prototyping of initial designs with minimal effort.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micro and Nano Engineering
Micro and Nano Engineering Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
67
审稿时长
80 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信