Antonio Cerdeira , Magali Estrada , Ahmed Mounir , Tibor Grasser , Benjamín Iñiguez
{"title":"Analysis of the mobility behavior of MOS2 2D FETs","authors":"Antonio Cerdeira , Magali Estrada , Ahmed Mounir , Tibor Grasser , Benjamín Iñiguez","doi":"10.1016/j.sse.2024.109032","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we analyze the behavior of 2D FETs, with channel length greater than the mean free path, and using MOCVD or CVD deposition method for the deposition of the 2D semiconductor layer, with different dielectric materials and EOTs. We show that transfer, output and conductance characteristics can be modeled with precision, considering the hopping transport mechanism as the predominant one, similarly to amorphous or polycrystalline TFTs. It was also observed that for the devices with channel length above one micrometer, mobility increased with the gate voltage as a power law. For channel lengths of 1 µm and 100 nm, mobility decreased with voltage, which in this case, can be attributed to other extrinsic effects, as the presence of high series resistance at the drain and source, which becomes more important as the channel length reduces, modifying its behavior with gate voltage.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"224 ","pages":"Article 109032"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001813","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we analyze the behavior of 2D FETs, with channel length greater than the mean free path, and using MOCVD or CVD deposition method for the deposition of the 2D semiconductor layer, with different dielectric materials and EOTs. We show that transfer, output and conductance characteristics can be modeled with precision, considering the hopping transport mechanism as the predominant one, similarly to amorphous or polycrystalline TFTs. It was also observed that for the devices with channel length above one micrometer, mobility increased with the gate voltage as a power law. For channel lengths of 1 µm and 100 nm, mobility decreased with voltage, which in this case, can be attributed to other extrinsic effects, as the presence of high series resistance at the drain and source, which becomes more important as the channel length reduces, modifying its behavior with gate voltage.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.