{"title":"Study on electrical performance of AlGaN/GaN high electron mobility transistor based on cap layer design","authors":"Tieying Zhang, Peng Cui, Xin Luo, Siheng Chen, Liu Wang, Jiacheng Dai, Kaifa Qi, Handoko Linewih, Zhaojun Lin, Xiangang Xu, Jisheng Han","doi":"10.1016/j.sse.2024.109051","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the impact of different cap layers on the electrical properties of AlGaN/GaN high electron mobility transistors (HEMTs). By comparing the fabricated AlGaN/GaN HEMTs with GaN and AlN cap layers, it was found that AlN cap layer increases the two-dimensional electron gas (2DEG) density due to its superior passivation and polarization effects, yielding a higher saturation current and boosting breakdown voltage from 615 V (GaN) to 895 V (AlN). Sentaurus TCAD simulations confirm these findings, showing a deeper energy band triangular potential well in AlN-capped HEMTs, leading to a 2DEG electron density of 1.19 × 10<sup>13</sup> cm<sup>−2</sup>, compared to 0.93 × 10<sup>13</sup> cm<sup>−2</sup> for GaN-capped HEMTs. The larger energy band gap of AlN cap layer provides a more effective potential barrier, reducing electric field intensity and increasing breakdown voltage. Additionally, the novel AlN-AlGaN-GaN and GaN-AlGaN-AlN graded cap layers are proposed to further enhance breakdown voltage, reaching up to 1308 V. These graded structures balance the electric field, block electron leakage, and improve electron transfer, providing a significant performance boost. This study underscores the potential of AlN and graded cap layers for future high-performance HEMTs.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"224 ","pages":"Article 109051"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124002004","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the impact of different cap layers on the electrical properties of AlGaN/GaN high electron mobility transistors (HEMTs). By comparing the fabricated AlGaN/GaN HEMTs with GaN and AlN cap layers, it was found that AlN cap layer increases the two-dimensional electron gas (2DEG) density due to its superior passivation and polarization effects, yielding a higher saturation current and boosting breakdown voltage from 615 V (GaN) to 895 V (AlN). Sentaurus TCAD simulations confirm these findings, showing a deeper energy band triangular potential well in AlN-capped HEMTs, leading to a 2DEG electron density of 1.19 × 1013 cm−2, compared to 0.93 × 1013 cm−2 for GaN-capped HEMTs. The larger energy band gap of AlN cap layer provides a more effective potential barrier, reducing electric field intensity and increasing breakdown voltage. Additionally, the novel AlN-AlGaN-GaN and GaN-AlGaN-AlN graded cap layers are proposed to further enhance breakdown voltage, reaching up to 1308 V. These graded structures balance the electric field, block electron leakage, and improve electron transfer, providing a significant performance boost. This study underscores the potential of AlN and graded cap layers for future high-performance HEMTs.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.