{"title":"Machine learning-enhanced electrochemical sensors for food safety: Applications and perspectives","authors":"Wajeeha Pervaiz , Muhammad Hussnain Afzal , Niu Feng , Xuewen Peng , Yiping Chen","doi":"10.1016/j.tifs.2025.104872","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Food safety is a critical global concern that directly impacts human health and well-being. Electrochemical sensors have garnered considerable interest for detecting contaminants in food due to their sensitivity and selectivity; however, issues such as sensor instability and electrode fouling limit their effectiveness. The integration of machine learning (ML) into electrochemical sensing offers a transformative approach, enhancing sensor performance, stability, and data processing capabilities while enabling real-time monitoring.</div></div><div><h3>Scope and approach</h3><div>This review succinctly explores the use of ML-enhanced electrochemical sensors specifically for food safety applications. Initially, various ML algorithms applicable to electrochemical sensor technology for food safety monitoring are discussed. The review then highlights the application of ML-enhanced sensors in detecting food-related contaminants, such as pesticides, pharmaceutical residues, heavy metals, microorganisms, artificial dyes, and phenolic compounds. Finally, it addresses the challenges and future prospects in advancing electrochemical sensors for food safety, emphasizing the potential of appropriate ML algorithms to improve in-situ food safety monitoring.</div></div><div><h3>Key findings and conclusions</h3><div>The integration of ML with electrochemical sensors improves their sensitivity, selectivity, and stability, addressing issues like electrode fouling. ML algorithms such as support vector machines, artificial neural networks, and random forests effectively detect food contaminants like pesticides, heavy metals, and microorganisms. ML also enables real-time data processing for quick, accurate detection of trace-level contaminants. However, challenges remain in sensor calibration, data reliability, and the need for high-quality training datasets. Future research should focus on enhancing sensor robustness, refining ML models for improved accuracy, and advancing the commercialization of ML-enhanced sensors for food safety monitoring.</div></div>","PeriodicalId":441,"journal":{"name":"Trends in Food Science & Technology","volume":"156 ","pages":"Article 104872"},"PeriodicalIF":15.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Food Science & Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924224425000081","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Food safety is a critical global concern that directly impacts human health and well-being. Electrochemical sensors have garnered considerable interest for detecting contaminants in food due to their sensitivity and selectivity; however, issues such as sensor instability and electrode fouling limit their effectiveness. The integration of machine learning (ML) into electrochemical sensing offers a transformative approach, enhancing sensor performance, stability, and data processing capabilities while enabling real-time monitoring.
Scope and approach
This review succinctly explores the use of ML-enhanced electrochemical sensors specifically for food safety applications. Initially, various ML algorithms applicable to electrochemical sensor technology for food safety monitoring are discussed. The review then highlights the application of ML-enhanced sensors in detecting food-related contaminants, such as pesticides, pharmaceutical residues, heavy metals, microorganisms, artificial dyes, and phenolic compounds. Finally, it addresses the challenges and future prospects in advancing electrochemical sensors for food safety, emphasizing the potential of appropriate ML algorithms to improve in-situ food safety monitoring.
Key findings and conclusions
The integration of ML with electrochemical sensors improves their sensitivity, selectivity, and stability, addressing issues like electrode fouling. ML algorithms such as support vector machines, artificial neural networks, and random forests effectively detect food contaminants like pesticides, heavy metals, and microorganisms. ML also enables real-time data processing for quick, accurate detection of trace-level contaminants. However, challenges remain in sensor calibration, data reliability, and the need for high-quality training datasets. Future research should focus on enhancing sensor robustness, refining ML models for improved accuracy, and advancing the commercialization of ML-enhanced sensors for food safety monitoring.
期刊介绍:
Trends in Food Science & Technology is a prestigious international journal that specializes in peer-reviewed articles covering the latest advancements in technology, food science, and human nutrition. It serves as a bridge between specialized primary journals and general trade magazines, providing readable and scientifically rigorous reviews and commentaries on current research developments and their potential applications in the food industry.
Unlike traditional journals, Trends in Food Science & Technology does not publish original research papers. Instead, it focuses on critical and comprehensive reviews to offer valuable insights for professionals in the field. By bringing together cutting-edge research and industry applications, this journal plays a vital role in disseminating knowledge and facilitating advancements in the food science and technology sector.