Improving the techno-functionality of wild almond protein isolate-based films by its hydrolysates and cold plasma treatment

IF 4.6 Q1 CHEMISTRY, APPLIED
Zahra Tahsiri , Sara Hedayati , Mehrdad Niakousari
{"title":"Improving the techno-functionality of wild almond protein isolate-based films by its hydrolysates and cold plasma treatment","authors":"Zahra Tahsiri ,&nbsp;Sara Hedayati ,&nbsp;Mehrdad Niakousari","doi":"10.1016/j.fhfh.2025.100199","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, composite films (COFI) using wild almond protein isolate (WAPI) and Persian gum (PG) in a ratio of 9:1 and varying amounts (0, 0.15%, 0.30%, and 0.60% (W/V)) of wild almond protein hydrolysate (PH) were developed. The COFI was exposed to atmospheric cold plasma (CP). The physicochemical, antioxidant, and antimicrobial characteristics of COFI before and after CP exposure were evaluated. The inclusion of PH did not significantly influence the COFI's moisture content biodegradability; however, the film thickness and film water vapor permeability increased. As the amount of PH in the COFI rose from 0 to 0.60%, the total phenolic content as well as antioxidant activity (determined by the DPPH and ABTS assays) were enhanced. While not being effective against <em>Escherichia coli</em>, the COFI containing PH exhibited inhibitory effects against <em>Staphylococcus aureus</em>. CP treatment improved the COFI in terms of their mechanical attributes without compromising antimicrobial and antioxidant features. Analysis of the FTIR spectra showed detectable enhancements in peak intensity at 1400, 1538, and 1628 cm<sup>−1</sup>, while micrograph patterns displayed an increase in the coarseness of COFIs, following cold plasma treatment. Overall, the COFIs with 0.60% PH (W/V) treated with cold plasma were the most functionally favorable.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"7 ","pages":"Article 100199"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids for Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667025925000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, composite films (COFI) using wild almond protein isolate (WAPI) and Persian gum (PG) in a ratio of 9:1 and varying amounts (0, 0.15%, 0.30%, and 0.60% (W/V)) of wild almond protein hydrolysate (PH) were developed. The COFI was exposed to atmospheric cold plasma (CP). The physicochemical, antioxidant, and antimicrobial characteristics of COFI before and after CP exposure were evaluated. The inclusion of PH did not significantly influence the COFI's moisture content biodegradability; however, the film thickness and film water vapor permeability increased. As the amount of PH in the COFI rose from 0 to 0.60%, the total phenolic content as well as antioxidant activity (determined by the DPPH and ABTS assays) were enhanced. While not being effective against Escherichia coli, the COFI containing PH exhibited inhibitory effects against Staphylococcus aureus. CP treatment improved the COFI in terms of their mechanical attributes without compromising antimicrobial and antioxidant features. Analysis of the FTIR spectra showed detectable enhancements in peak intensity at 1400, 1538, and 1628 cm−1, while micrograph patterns displayed an increase in the coarseness of COFIs, following cold plasma treatment. Overall, the COFIs with 0.60% PH (W/V) treated with cold plasma were the most functionally favorable.

Abstract Image

利用野生杏仁分离蛋白水解物和冷等离子体处理提高其技术功能性
采用野生杏仁分离蛋白(WAPI)和波斯胶(PG)以9:1的比例和不同PH(0、0.15%、0.30%和0.60% (W/V))的野生杏仁水解蛋白(PH)制备复合膜(COFI)。COFI暴露于大气冷等离子体(CP)中。评估了CP暴露前后COFI的理化、抗氧化和抗菌特性。PH包合对COFI的含水率、生物降解性无显著影响;膜厚和膜的水蒸气渗透性增加。随着COFI中PH值从0增加到0.60%,总酚含量和抗氧化活性(通过DPPH和ABTS测定)均增强。虽然对大肠杆菌无效,但含有PH的COFI对金黄色葡萄球菌有抑制作用。CP处理在不影响抗菌和抗氧化特性的情况下提高了COFI的力学性能。FTIR光谱分析显示,在1400、1538和1628 cm−1处的峰值强度可检测到增强,而显微图像显示,冷等离子体处理后,cofi的粗糙度增加。总的来说,冷等离子体处理PH值为0.60% (W/V)的cofi在功能上是最有利的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
61 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信