{"title":"Numerical range of real-valued linear mapping on the complex Stiefel manifold: Convexity and application","authors":"Hanzhi Chen, Zhenhong Huang, Mengmeng Song, Yong Xia","doi":"10.1016/j.laa.2025.01.031","DOIUrl":null,"url":null,"abstract":"<div><div>The study confirms the convexity of the joint numerical range of any <em>k</em> real-valued linear functions on the <span><math><mi>n</mi><mo>×</mo><mi>p</mi></math></span> complex Stiefel manifold under the condition <span><math><mi>k</mi><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn><mi>p</mi><mo>+</mo><mn>1</mn></math></span>. Revealing the hidden convexity of fractional linear programming on the complex Stiefel manifold, a first-time study, serves as an impactful application.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"710 ","pages":"Pages 95-110"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000370","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The study confirms the convexity of the joint numerical range of any k real-valued linear functions on the complex Stiefel manifold under the condition . Revealing the hidden convexity of fractional linear programming on the complex Stiefel manifold, a first-time study, serves as an impactful application.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.