Yeting Tao, Yuying Wu, Yaotian Zhang, Jingsheng Wang, Youtian Tao
{"title":"Balancing carrier injection/transport through CN-modification on classical hole-transport host for enhanced performance in phosphorescent OLEDs","authors":"Yeting Tao, Yuying Wu, Yaotian Zhang, Jingsheng Wang, Youtian Tao","doi":"10.1016/j.sse.2025.109075","DOIUrl":null,"url":null,"abstract":"<div><div>Two bipolar host materials, TCTA-3CN and TCTA-4CN, are developed by incorporating strong electron-withdrawing cyano groups at the 3- or 4-position of carbazole in classical hole-transport tris(4-carbazoyl-9-ylphenyl)amine (TCTA). Their HOMO/LUMO energy levels were significantly reduced to −5.56/−2.32 eV and −5.60/−2.48 eV, respectively, compared to −5.19/−1.92 eV for TCTA. This CN-modification results in a markedly improved carrier balance, as evidenced by a reduction in the hole/electron current ratio from >16,000 for TCTA to ∼45 for both TCTA-3CN and TCTA-4CN in the corresponding single-carrier devices at 4 V. When utilized as host materials for (ppy)<sub>2</sub>Ir(acac) based devices, a synergistic enhancement in luminescence and efficiency was observed.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"225 ","pages":"Article 109075"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125000206","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Two bipolar host materials, TCTA-3CN and TCTA-4CN, are developed by incorporating strong electron-withdrawing cyano groups at the 3- or 4-position of carbazole in classical hole-transport tris(4-carbazoyl-9-ylphenyl)amine (TCTA). Their HOMO/LUMO energy levels were significantly reduced to −5.56/−2.32 eV and −5.60/−2.48 eV, respectively, compared to −5.19/−1.92 eV for TCTA. This CN-modification results in a markedly improved carrier balance, as evidenced by a reduction in the hole/electron current ratio from >16,000 for TCTA to ∼45 for both TCTA-3CN and TCTA-4CN in the corresponding single-carrier devices at 4 V. When utilized as host materials for (ppy)2Ir(acac) based devices, a synergistic enhancement in luminescence and efficiency was observed.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.