Threshold graphs, Kemeny's constant, and related random walk parameters

IF 1 3区 数学 Q1 MATHEMATICS
Jane Breen , Sooyeong Kim , Alexander Low Fung , Amy Mann , Andrei A. Parfeni , Giovanni Tedesco
{"title":"Threshold graphs, Kemeny's constant, and related random walk parameters","authors":"Jane Breen ,&nbsp;Sooyeong Kim ,&nbsp;Alexander Low Fung ,&nbsp;Amy Mann ,&nbsp;Andrei A. Parfeni ,&nbsp;Giovanni Tedesco","doi":"10.1016/j.laa.2024.12.022","DOIUrl":null,"url":null,"abstract":"<div><div>Kemeny's constant measures how fast a random walker moves around in a graph. Expressions for Kemeny's constant can be quite involved, and for this reason, many lines of research focus on graphs with structure that makes them amenable to more in-depth study (for example, regular graphs, acyclic graphs, and 1-connected graphs). In this article, we study Kemeny's constant for random walks on threshold graphs, which are an interesting family of graphs with properties that make examining Kemeny's constant difficult; that is, they are usually not regular, not acyclic, and not 1-connected. This article is a showcase of various techniques for calculating Kemeny's constant and related random walk parameters for graphs. We establish explicit formulae for <span><math><mi>K</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> in terms of the construction code of a threshold graph, and completely determine the ordering of the accessibility indices of vertices in threshold graphs.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 284-313"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004944","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Kemeny's constant measures how fast a random walker moves around in a graph. Expressions for Kemeny's constant can be quite involved, and for this reason, many lines of research focus on graphs with structure that makes them amenable to more in-depth study (for example, regular graphs, acyclic graphs, and 1-connected graphs). In this article, we study Kemeny's constant for random walks on threshold graphs, which are an interesting family of graphs with properties that make examining Kemeny's constant difficult; that is, they are usually not regular, not acyclic, and not 1-connected. This article is a showcase of various techniques for calculating Kemeny's constant and related random walk parameters for graphs. We establish explicit formulae for K(G) in terms of the construction code of a threshold graph, and completely determine the ordering of the accessibility indices of vertices in threshold graphs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信