Adam H. Berliner , Minerva Catral , D.D. Olesky , P. van den Driessche
{"title":"Refined inertias of nonnegative patterns with positive off-diagonal entries","authors":"Adam H. Berliner , Minerva Catral , D.D. Olesky , P. van den Driessche","doi":"10.1016/j.laa.2025.01.008","DOIUrl":null,"url":null,"abstract":"<div><div>For a positive <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> pattern <span><math><mi>A</mi></math></span>, it is known that the refined inertia of <span><math><mi>A</mi></math></span>, <span><math><mi>ri</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span>, is the set of all nonnegative integral 4-tuples <span><math><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>,</mo><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></math></span> with <span><math><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mi>n</mi></math></span> and <span><math><msub><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>≥</mo><mn>1</mn></math></span>; whereas if <span><math><mi>A</mi></math></span> has all off-diagonal entries positive but all diagonal entries 0, then <span><math><mi>ri</mi><mo>(</mo><mi>A</mi><mo>)</mo></math></span> has the additional restriction that <span><math><msub><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>≥</mo><mn>2</mn></math></span>. We focus on the intermediate nonnegative patterns, that is those patterns with all off-diagonal entries positive, <span><math><mi>k</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> diagonal entries positive and the remaining <span><math><mi>n</mi><mo>−</mo><mi>k</mi></math></span> diagonal entries 0. We show that for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>, there is no restriction on <span><math><msub><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msub></math></span> for the refined inertia set, but <span><math><msub><mrow><mi>n</mi></mrow><mrow><mo>−</mo></mrow></msub><mo>≥</mo><mn>1</mn></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span>. We do this by constructing nonnegative matrix realizations for the patterns with <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> and 2 using the centralizer method, matrix bordering and superpattern results.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 271-283"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000084","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a positive pattern , it is known that the refined inertia of , , is the set of all nonnegative integral 4-tuples with and ; whereas if has all off-diagonal entries positive but all diagonal entries 0, then has the additional restriction that . We focus on the intermediate nonnegative patterns, that is those patterns with all off-diagonal entries positive, diagonal entries positive and the remaining diagonal entries 0. We show that for , there is no restriction on for the refined inertia set, but for . We do this by constructing nonnegative matrix realizations for the patterns with and 2 using the centralizer method, matrix bordering and superpattern results.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.