{"title":"Some families of digraphs determined by the complementarity spectrum","authors":"Diego Bravo , Florencia Cubría , Marcelo Fiori , Gustavo Rama","doi":"10.1016/j.laa.2025.01.022","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we study seven families of digraphs, and we determine whether digraphs in these families can be determined by their spectral radius. These seven families have been characterized as the only families of digraphs with exactly three complementarity eigenvalues <span><span>[1]</span></span>, and therefore our results have consequences in this context, showing which families can be determined by the complementarity spectrum. As a particular case, we prove that the <em>θ</em>-digraphs can be characterized by the spectral radius, extending some recent results on this family <span><span>[2]</span></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 364-384"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000229","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we study seven families of digraphs, and we determine whether digraphs in these families can be determined by their spectral radius. These seven families have been characterized as the only families of digraphs with exactly three complementarity eigenvalues [1], and therefore our results have consequences in this context, showing which families can be determined by the complementarity spectrum. As a particular case, we prove that the θ-digraphs can be characterized by the spectral radius, extending some recent results on this family [2].
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.