Bojan Kuzma , Chi-Kwong Li , Edward Poon , Sushil Singla
{"title":"Linear preservers of parallel matrix pairs with respect to the k-numerical radius","authors":"Bojan Kuzma , Chi-Kwong Li , Edward Poon , Sushil Singla","doi":"10.1016/j.laa.2025.01.019","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo><</mo><mi>n</mi></math></span> be integers. Two <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> matrices <em>A</em> and <em>B</em> form a parallel pair with respect to the <em>k</em>-numerical radius <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> if <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>+</mo><mi>μ</mi><mi>B</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>B</mi><mo>)</mo></math></span> for some scalar <em>μ</em> with <span><math><mo>|</mo><mi>μ</mi><mo>|</mo><mo>=</mo><mn>1</mn></math></span>; they form a TEA (triangle equality attaining) pair if the preceding equation holds for <span><math><mi>μ</mi><mo>=</mo><mn>1</mn></math></span>. We classify linear bijections on <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and on <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> which preserve parallel pairs or TEA pairs. Such preservers are scalar multiples of <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-isometries, except for some exceptional maps on <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> when <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>k</mi></math></span>.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"709 ","pages":"Pages 342-363"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525000199","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be integers. Two matrices A and B form a parallel pair with respect to the k-numerical radius if for some scalar μ with ; they form a TEA (triangle equality attaining) pair if the preceding equation holds for . We classify linear bijections on and on which preserve parallel pairs or TEA pairs. Such preservers are scalar multiples of -isometries, except for some exceptional maps on when .
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.