Large Language Models (such as ChatGPT) as Tools for Machine Learning-Based Data Insights in Analytical Chemistry

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Ludovic Duponchel, Rodrigo Rocha de Oliveira, Vincent Motto-Ros
{"title":"Large Language Models (such as ChatGPT) as Tools for Machine Learning-Based Data Insights in Analytical Chemistry","authors":"Ludovic Duponchel, Rodrigo Rocha de Oliveira, Vincent Motto-Ros","doi":"10.1021/acs.analchem.4c05046","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI), especially through the development of deep learning techniques like convolutional neural networks (CNNs), has revolutionized numerous fields. CNNs, introduced by Yann LeCun in the 1990s (Hubbard, W.; Jackel, L. D. Backpropagation Applied to Handwritten Zip Code Recognition. <i>Neural Comput.</i> <b>1989</b>, <i>1</i> (4), 541– 551. https://doi.org/10.1162/neco.1989.1.4.541), have found applications in healthcare for medical diagnostics, autonomous vehicles in transportation, stock market prediction in finance, and image recognition in computer vision to name just a few. Similarly, in analytical chemistry, deep learning has enhanced data analysis from techniques like MS spectrometry, NMR, fluorescence spectroscopy, and chromatography. Another AI branch, Natural Language Processing (NLP), has surged recently with the advent of Large Language Models (LLMs), such as OpenAI’s ChatGPT. This paper demonstrates the application of an LLM via a smartphone to conduct multivariate data analyses, in an interactive conversational manner, of a hyper-spectral imaging data set from laser-induced breakdown spectroscopy (LIBS). We demonstrate the potential of LLMs to process and analyze data sets, which automatically generate and execute code in response to user queries, and anticipate their growing role in the future of analytical chemistry.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"76 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05046","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI), especially through the development of deep learning techniques like convolutional neural networks (CNNs), has revolutionized numerous fields. CNNs, introduced by Yann LeCun in the 1990s (Hubbard, W.; Jackel, L. D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1 (4), 541– 551. https://doi.org/10.1162/neco.1989.1.4.541), have found applications in healthcare for medical diagnostics, autonomous vehicles in transportation, stock market prediction in finance, and image recognition in computer vision to name just a few. Similarly, in analytical chemistry, deep learning has enhanced data analysis from techniques like MS spectrometry, NMR, fluorescence spectroscopy, and chromatography. Another AI branch, Natural Language Processing (NLP), has surged recently with the advent of Large Language Models (LLMs), such as OpenAI’s ChatGPT. This paper demonstrates the application of an LLM via a smartphone to conduct multivariate data analyses, in an interactive conversational manner, of a hyper-spectral imaging data set from laser-induced breakdown spectroscopy (LIBS). We demonstrate the potential of LLMs to process and analyze data sets, which automatically generate and execute code in response to user queries, and anticipate their growing role in the future of analytical chemistry.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信