Engineering the performance of bioparaffins from soybean oil to mimic mineral waxes: A non-linear chemometric modeling

IF 1.9 4区 农林科学 Q3 CHEMISTRY, APPLIED
Sandra Romero, Mirta Alcaraz, Liliana Forzani, Roque Minari, Sebastián E. Collins
{"title":"Engineering the performance of bioparaffins from soybean oil to mimic mineral waxes: A non-linear chemometric modeling","authors":"Sandra Romero,&nbsp;Mirta Alcaraz,&nbsp;Liliana Forzani,&nbsp;Roque Minari,&nbsp;Sebastián E. Collins","doi":"10.1002/aocs.12873","DOIUrl":null,"url":null,"abstract":"<p>Bioparaffins, derived from soybean oil, hold significant potential as sustainable alternatives to mineral waxes in various industrial applications. However, to fully exploit their benefits, it is necessary to engineer their performance and properties. In this work, a non-linear partial least squares (PLS) algorithm was used to relate the melting profiles obtained via differential scanning calorimetry (DSC) to the chemical composition determined by gas chromatography (GC) of simple and binary mixtures of (partially) hydrogenated samples. This model was used to determine the composition of a bioparaffin to mimic the thermal and textural properties of commercial mineral paraffin. This innovative approach allows for broader adoption in industries seeking sustainable alternatives to petroleum-based waxes.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 1","pages":"125-135"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12873","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Bioparaffins, derived from soybean oil, hold significant potential as sustainable alternatives to mineral waxes in various industrial applications. However, to fully exploit their benefits, it is necessary to engineer their performance and properties. In this work, a non-linear partial least squares (PLS) algorithm was used to relate the melting profiles obtained via differential scanning calorimetry (DSC) to the chemical composition determined by gas chromatography (GC) of simple and binary mixtures of (partially) hydrogenated samples. This model was used to determine the composition of a bioparaffin to mimic the thermal and textural properties of commercial mineral paraffin. This innovative approach allows for broader adoption in industries seeking sustainable alternatives to petroleum-based waxes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
95
审稿时长
2.4 months
期刊介绍: The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate. JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of year­to­year, environmental, and/ or cultivar variations through use of appropriate statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信