Quercetin: Potential antidiabetic effects through enzyme inhibition and starch digestibility

Deniz Günal-Köroğlu, Gizem Catalkaya, Büşra Yusufoğlu, Gizem Kezer, Tuba Esatbeyoglu, A. M. Abd El-Aty, Esra Capanoglu
{"title":"Quercetin: Potential antidiabetic effects through enzyme inhibition and starch digestibility","authors":"Deniz Günal-Köroğlu,&nbsp;Gizem Catalkaya,&nbsp;Büşra Yusufoğlu,&nbsp;Gizem Kezer,&nbsp;Tuba Esatbeyoglu,&nbsp;A. M. Abd El-Aty,&nbsp;Esra Capanoglu","doi":"10.1002/fsh3.12066","DOIUrl":null,"url":null,"abstract":"<p>Diabetes mellitus involves high blood sugar levels due to insufficient insulin action. Furthermore, enzymes such as α-amylase and α-glucosidase break down carbohydrates into glucose, leading to postprandial hyperglycemia. Flavonoids, particularly quercetin, inhibit these enzymes, slowing carbohydrate digestion and reducing glucose absorption. Quercetin has significant hypoglycemic effects with inhibitory concentration (IC<sub>50</sub>) values comparable to acarbose, a standard inhibitor, suggesting its potential as a natural alternative for diabetes management. <i>In silico</i> models, including molecular docking, molecular dynamics (MD) simulations, and quantitative structure-activity relationship (QSAR) approaches, help researchers understand the molecular interactions of therapeutic agents. These techniques identify potential inhibitors, determine enzyme-inhibitor structures, and calculate binding energies, correlating findings with <i>in vitro</i> or <i>in vivo</i> data. Molecular docking predicts molecular orientations, MD simulations offer insights into enzyme–inhibitor dynamics, and QSAR models predict inhibitory potential based on structural properties. Studies have shown that quercetin effectively inhibits α-glucosidase and α-amylase by forming hydrogen bonds with specific amino acid residues. Quercetin interacts with starches and reduces their digestibility, increases the formation of resistant starch, lowers the glycemic index, and inhibits digestive enzymes. Studies show that the effects of quercetin on starch digestion vary with concentration and type of starch, and its incorporation into foods such as bakery products, pasta, etc. can significantly decrease starch hydrolysis. The incorporation of quercetin into starch matrices may aid in the development of functional foods aimed at improving glycemic control.</p>","PeriodicalId":100546,"journal":{"name":"Food Safety and Health","volume":"3 1","pages":"9-22"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsh3.12066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Safety and Health","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fsh3.12066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes mellitus involves high blood sugar levels due to insufficient insulin action. Furthermore, enzymes such as α-amylase and α-glucosidase break down carbohydrates into glucose, leading to postprandial hyperglycemia. Flavonoids, particularly quercetin, inhibit these enzymes, slowing carbohydrate digestion and reducing glucose absorption. Quercetin has significant hypoglycemic effects with inhibitory concentration (IC50) values comparable to acarbose, a standard inhibitor, suggesting its potential as a natural alternative for diabetes management. In silico models, including molecular docking, molecular dynamics (MD) simulations, and quantitative structure-activity relationship (QSAR) approaches, help researchers understand the molecular interactions of therapeutic agents. These techniques identify potential inhibitors, determine enzyme-inhibitor structures, and calculate binding energies, correlating findings with in vitro or in vivo data. Molecular docking predicts molecular orientations, MD simulations offer insights into enzyme–inhibitor dynamics, and QSAR models predict inhibitory potential based on structural properties. Studies have shown that quercetin effectively inhibits α-glucosidase and α-amylase by forming hydrogen bonds with specific amino acid residues. Quercetin interacts with starches and reduces their digestibility, increases the formation of resistant starch, lowers the glycemic index, and inhibits digestive enzymes. Studies show that the effects of quercetin on starch digestion vary with concentration and type of starch, and its incorporation into foods such as bakery products, pasta, etc. can significantly decrease starch hydrolysis. The incorporation of quercetin into starch matrices may aid in the development of functional foods aimed at improving glycemic control.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信