Refining Reduced the Number and Content of Compounds of Soybean Oil

IF 4 Q2 FOOD SCIENCE & TECHNOLOGY
eFood Pub Date : 2025-02-04 DOI:10.1002/efd2.70039
Zhaohui Sun, Huange Jiang, Yiwen Yang, Mengxu Wang, Jingmin Tong, Lan Zhao, Shunian Luo, Maoqing Wang
{"title":"Refining Reduced the Number and Content of Compounds of Soybean Oil","authors":"Zhaohui Sun,&nbsp;Huange Jiang,&nbsp;Yiwen Yang,&nbsp;Mengxu Wang,&nbsp;Jingmin Tong,&nbsp;Lan Zhao,&nbsp;Shunian Luo,&nbsp;Maoqing Wang","doi":"10.1002/efd2.70039","DOIUrl":null,"url":null,"abstract":"<p>To explore the effect of the refining process on the compounds of soybean oil, three different refined grade soybean oils were detected by ultra performance liquid chromatography-high-definition mass spectrometry and chemometrics for finding the differential compounds. The results of PCA and PLS-DA showed that three different refined grade soybean oils had the clear separation trend and the number and content of compounds in soybean crude oil (SCO) gradually reduced with the increased process of the refining. Our result indicated that the refining processes reduced the number and content of compounds in SCO. The decreased trans fatty acids and other unfavorable quality compounds (free fatty acids) suggested that the refining process was necessary. But, 108 compounds with potential function in SCO were significantly reduced during the process of the refine. Most of these compounds (daidzein, linoleamide, and stearamide, etc.) were reduced during the process of the third-grade refine and were even not detected after the first-grade refine. In addition, 16 compounds were not found in SCO and were detected in the refined soybean oil and increased during the refining processes. Our results suggest that refining diminishes the quantity and concentration of compounds with potential function in SCO and should be improved.</p>","PeriodicalId":11436,"journal":{"name":"eFood","volume":"6 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/efd2.70039","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eFood","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/efd2.70039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To explore the effect of the refining process on the compounds of soybean oil, three different refined grade soybean oils were detected by ultra performance liquid chromatography-high-definition mass spectrometry and chemometrics for finding the differential compounds. The results of PCA and PLS-DA showed that three different refined grade soybean oils had the clear separation trend and the number and content of compounds in soybean crude oil (SCO) gradually reduced with the increased process of the refining. Our result indicated that the refining processes reduced the number and content of compounds in SCO. The decreased trans fatty acids and other unfavorable quality compounds (free fatty acids) suggested that the refining process was necessary. But, 108 compounds with potential function in SCO were significantly reduced during the process of the refine. Most of these compounds (daidzein, linoleamide, and stearamide, etc.) were reduced during the process of the third-grade refine and were even not detected after the first-grade refine. In addition, 16 compounds were not found in SCO and were detected in the refined soybean oil and increased during the refining processes. Our results suggest that refining diminishes the quantity and concentration of compounds with potential function in SCO and should be improved.

Abstract Image

精制降低了大豆油中化合物的数量和含量
为探究精制工艺对豆油中化合物的影响,采用超高效液相色谱-高清质谱联用化学计量学对3种不同精制等级的豆油进行了差异化合物的检测。主成分分析(PCA)和PLS-DA分析结果表明,3种不同精制等级的大豆油具有明显的分离趋势,随着精制工艺的增加,大豆油中化合物的数量和含量逐渐降低。我们的结果表明,精炼工艺降低了SCO中化合物的数量和含量。反式脂肪酸和其他对质量不利的化合物(游离脂肪酸)的减少表明有必要进行精制。但是,在SCO中具有潜在功能的108个化合物在精炼过程中被显著还原。这些化合物(大豆苷元、亚油酰胺、硬脂酰胺等)大部分在三级精炼过程中被还原,甚至在一级精炼后未被检测到。此外,16种化合物在SCO中未发现,在精炼大豆油中检测到,并且在精炼过程中增加。我们的结果表明,精炼减少了SCO中具有潜在功能的化合物的数量和浓度,应该加以改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eFood
eFood food research-
CiteScore
6.00
自引率
0.00%
发文量
44
期刊介绍: eFood is the official journal of the International Association of Dietetic Nutrition and Safety (IADNS) which eFood aims to cover all aspects of food science and technology. The journal’s mission is to advance and disseminate knowledge of food science, and to promote and foster research into the chemistry, nutrition and safety of food worldwide, by supporting open dissemination and lively discourse about a wide range of the most important topics in global food and health. The Editors welcome original research articles, comprehensive reviews, mini review, highlights, news, short reports, perspectives and correspondences on both experimental work and policy management in relation to food chemistry, nutrition, food health and safety, etc. Research areas covered in the journal include, but are not limited to, the following: ● Food chemistry ● Nutrition ● Food safety ● Food and health ● Food technology and sustainability ● Food processing ● Sensory and consumer science ● Food microbiology ● Food toxicology ● Food packaging ● Food security ● Healthy foods ● Super foods ● Food science (general)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信