In vitro high-throughput screening of the antimicrobial activity of different compounds against Xylella fastidiosa subsp. pauca

IF 5.2 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Carmine Del Grosso, Luca Grandi, Tommaso Lombardi, Giusy D’Attoma, Nicolas Schmitt, Vito Rocco De Michele, Maria Saponari
{"title":"In vitro high-throughput screening of the antimicrobial activity of different compounds against Xylella fastidiosa subsp. pauca","authors":"Carmine Del Grosso,&nbsp;Luca Grandi,&nbsp;Tommaso Lombardi,&nbsp;Giusy D’Attoma,&nbsp;Nicolas Schmitt,&nbsp;Vito Rocco De Michele,&nbsp;Maria Saponari","doi":"10.1186/s40538-025-00734-w","DOIUrl":null,"url":null,"abstract":"<div><p>The worldwide distribution and the host range of the phytopathogenic bacterium <i>Xylella fastidiosa</i> (<i>Xf</i>) have significantly changed in the last decade with numerous outbreaks reported in the Old Continent. Among the different European isolates, those of the subspecies <i>pauca</i> have been ranked as highly pathogenic, being the causal agents of the olive quick decline decimating olive trees in southern Italy. Significant research investments have been devoted towards finding therapeutic approaches to mitigate the impact of the infections in highly susceptible host species. This study aimed to evaluate in vitro efficacy against <i>Xylella fastidiosa</i> subsp. <i>pauca</i> (<i>Xfp</i>) of different classes of products, including metal ions, micronutrients, antibiotics, and phenolic compounds. The slow and fastidious growth of the bacterium requires optimization of specific protocols to assess antibacterial activities and the effect on biofilm formation. The results showed a dose–response effect against <i>Xf</i> for most products. Notably, among micronutrients and phenolic compounds, CuSO<sub>4</sub>·5H<sub>2</sub>O, Dentamet®, pyrocatechol and 4-methylcatechol showed the highest bactericidal and antibiofilm activity. At the same time, antibiotics demonstrated substantial bacteriostatic activity effectively inhibiting biofilm formation. For metal ions, such as CoCl<sub>2</sub>, K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·4H<sub>2</sub>O and MnSO<sub>4</sub>·H<sub>2</sub>O, significant effects on bacterial cell viability were recorded but were not able to completely kill the bacterium. Regarding the antibiofilm activity, some of them were able to inhibit biofilm formation, while others increased its formation. Ca(NO<sub>3</sub>)<sub>2</sub>·4H<sub>2</sub>O and Na<sub>2</sub>MoO<sub>4</sub> were found to promote the growth of <i>Xf</i>. The methodologies described proved to be useful for profiling the antimicrobial activity of a large panel of compounds and the data collected provide evidence of their in vitro effectiveness.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00734-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-025-00734-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The worldwide distribution and the host range of the phytopathogenic bacterium Xylella fastidiosa (Xf) have significantly changed in the last decade with numerous outbreaks reported in the Old Continent. Among the different European isolates, those of the subspecies pauca have been ranked as highly pathogenic, being the causal agents of the olive quick decline decimating olive trees in southern Italy. Significant research investments have been devoted towards finding therapeutic approaches to mitigate the impact of the infections in highly susceptible host species. This study aimed to evaluate in vitro efficacy against Xylella fastidiosa subsp. pauca (Xfp) of different classes of products, including metal ions, micronutrients, antibiotics, and phenolic compounds. The slow and fastidious growth of the bacterium requires optimization of specific protocols to assess antibacterial activities and the effect on biofilm formation. The results showed a dose–response effect against Xf for most products. Notably, among micronutrients and phenolic compounds, CuSO4·5H2O, Dentamet®, pyrocatechol and 4-methylcatechol showed the highest bactericidal and antibiofilm activity. At the same time, antibiotics demonstrated substantial bacteriostatic activity effectively inhibiting biofilm formation. For metal ions, such as CoCl2, K2B4O7·4H2O and MnSO4·H2O, significant effects on bacterial cell viability were recorded but were not able to completely kill the bacterium. Regarding the antibiofilm activity, some of them were able to inhibit biofilm formation, while others increased its formation. Ca(NO3)2·4H2O and Na2MoO4 were found to promote the growth of Xf. The methodologies described proved to be useful for profiling the antimicrobial activity of a large panel of compounds and the data collected provide evidence of their in vitro effectiveness.

Graphical Abstract

体外高通量筛选不同化合物对苛养木杆菌的抑菌活性。pauca
在过去的十年中,植物致病菌苛刻木杆菌(Xf)的全球分布和宿主范围发生了重大变化,在旧大陆报道了多次暴发。在不同的欧洲分离株中,pauca亚种的分离株被列为高致病性,是导致意大利南部橄榄树迅速下降的原因。大量的研究投资已经投入到寻找治疗方法,以减轻高度易感宿主物种感染的影响。本研究旨在评价其体外抗苛养木杆菌的效果。pauca (Xfp)的不同类别的产品,包括金属离子,微量营养素,抗生素和酚类化合物。细菌缓慢而挑剔的生长需要优化特定的方案来评估抗菌活性和对生物膜形成的影响。结果表明,大多数产品对Xf具有剂量效应。在微量营养素和酚类化合物中,CuSO4·5H2O、Dentamet®、邻苯二酚和4-甲基儿茶酚的杀菌和抗膜活性最高。同时,抗生素显示出显著的抑菌活性,可有效抑制生物膜的形成。对于金属离子,如CoCl2、K2B4O7·4H2O和MnSO4·H2O,对细菌的细胞活力有显著影响,但不能完全杀死细菌。在抗生物膜活性方面,有的能抑制生物膜的形成,有的能促进生物膜的形成。Ca(NO3)2·4H2O和Na2MoO4对Xf的生长有促进作用。所描述的方法被证明对分析大量化合物的抗菌活性是有用的,所收集的数据为其体外有效性提供了证据。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical and Biological Technologies in Agriculture
Chemical and Biological Technologies in Agriculture Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
3.00%
发文量
83
审稿时长
15 weeks
期刊介绍: Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture. This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population. Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信