{"title":"Enhancing Royal grape quality through a three-year investigation of soil management practices and organic amendments on berry biochemistry","authors":"Ozkan Kaya, Sinem Karakus, Fadime Ates, Selda Daler, Harlene Hatterman-Valenti","doi":"10.1186/s40538-025-00733-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Grape composition, characterized by mineral content, hormone levels, and antioxidant enzyme activities, fundamentally influences berry quality, nutritional value, and vine health. Various viticultural practices, particularly tillage methods and organic fertilization techniques, significantly impact these compositional parameters. This study investigates the effects of these agricultural practices on grape composition to establish optimal protocols for enhanced berry production and quality.</p><h3>Methods</h3><p>A three year study (2020–2022) evaluated the effects of soil management on grape quality in ‘Royal’ grapes (VIVC: 349). Using a Randomized Complete Block Design with four replicates of 12 vines, the study tested three tillage methods (chisel, disc harrow, and no-tillage) and four organic fertilizers (Antep radish, broccoli, olive blackwater, and a control). Treatments were analyzed for berry mineral content (macro and micronutrients), hormone levels (auxin, ABA, zeatin, SA, JA, cytokinin and GA), and antioxidant enzyme activities (SOD, POD, CAT, APX, GR, GST, G6PD and 6PGD).</p><h3>Results</h3><p>Based on our results, the disc harrow tillage method in conjunction with olive blackwater fertilizer demonstrated superior mineral accumulation, yielding peak concentrations of nitrogen (3.72%), phosphorus (0.40%), and magnesium (0.41 mg/kg) during the 2021 growing season. Endogenous hormone levels exhibited treatment-specific responses, with maximum indole-3-acetic acid (17.33 ng/g) accumulation observed under no tillage control conditions in 2022, while abscisic acid concentrations peaked (49,172.53 ng/g) under no tillage with broccoli fertilization. Antioxidant enzyme activities were significantly enhanced under chisel tillage combined with broccoli fertilizer treatment, leading to optimal superoxide dismutase (1426.54 EU) and peroxidase (14,936.81 EU) activities. Principal component analysis revealed that the first two components explained 51.35% of total variance, with distinct temporal clustering of treatment effects.</p><h3>Conclusion</h3><p>The optimal cultivation practice for ‘Royal’ grape variety was determined to be chisel tillage method combined with broccoli fertilization, which maximized both mineral nutrient content and hormone levels. These findings provide practical insights for viticulturists to optimize cultivation techniques for improved grape quality and nutritional value.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00733-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-025-00733-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Grape composition, characterized by mineral content, hormone levels, and antioxidant enzyme activities, fundamentally influences berry quality, nutritional value, and vine health. Various viticultural practices, particularly tillage methods and organic fertilization techniques, significantly impact these compositional parameters. This study investigates the effects of these agricultural practices on grape composition to establish optimal protocols for enhanced berry production and quality.
Methods
A three year study (2020–2022) evaluated the effects of soil management on grape quality in ‘Royal’ grapes (VIVC: 349). Using a Randomized Complete Block Design with four replicates of 12 vines, the study tested three tillage methods (chisel, disc harrow, and no-tillage) and four organic fertilizers (Antep radish, broccoli, olive blackwater, and a control). Treatments were analyzed for berry mineral content (macro and micronutrients), hormone levels (auxin, ABA, zeatin, SA, JA, cytokinin and GA), and antioxidant enzyme activities (SOD, POD, CAT, APX, GR, GST, G6PD and 6PGD).
Results
Based on our results, the disc harrow tillage method in conjunction with olive blackwater fertilizer demonstrated superior mineral accumulation, yielding peak concentrations of nitrogen (3.72%), phosphorus (0.40%), and magnesium (0.41 mg/kg) during the 2021 growing season. Endogenous hormone levels exhibited treatment-specific responses, with maximum indole-3-acetic acid (17.33 ng/g) accumulation observed under no tillage control conditions in 2022, while abscisic acid concentrations peaked (49,172.53 ng/g) under no tillage with broccoli fertilization. Antioxidant enzyme activities were significantly enhanced under chisel tillage combined with broccoli fertilizer treatment, leading to optimal superoxide dismutase (1426.54 EU) and peroxidase (14,936.81 EU) activities. Principal component analysis revealed that the first two components explained 51.35% of total variance, with distinct temporal clustering of treatment effects.
Conclusion
The optimal cultivation practice for ‘Royal’ grape variety was determined to be chisel tillage method combined with broccoli fertilization, which maximized both mineral nutrient content and hormone levels. These findings provide practical insights for viticulturists to optimize cultivation techniques for improved grape quality and nutritional value.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.