Hyeon Ji Yeo, Su Young Shin, Sang Un Park, Chang Ha Park
{"title":"Postharvest wounding treatment influences flavone production and biological activities of the hairy root cultures of Scutellaria baicalensis","authors":"Hyeon Ji Yeo, Su Young Shin, Sang Un Park, Chang Ha Park","doi":"10.1186/s40538-024-00715-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><i>Scutellaria baicalensis</i> roots contain root-specific flavones (baicalin, baicalein, and wogonin) exhibiting strong biological effects. Hence, this plant is considered the best plant material for hairy root system applications.</p><h3>Results</h3><p>In this study, we obtained hairy roots, which are considered natural genetically modified organisms, from <i>S. baicalensis</i> leaves in vitro using wild <i>Agrobacterium rhizogenes</i> (<i>A. rhizogenes</i>) R1000 and investigated the effects of postharvest wounding treatment on their flavone production and in vitro antimicrobial properties. Hairy roots were exposed to wounding stress, and the levels of baicalin, baicalein, and wogonin were determined using high-performance liquid chromatography (HPLC). We found that the levels of these flavones in <i>S. baicalensis</i> hairy roots increased after 6, 12, 24, 48, 72, and 96 h of exposure in a time-dependent manner. In particular, the highest production of three flavones was reported after exposure to 96 h of wounding stress. Furthermore, the expression levels of genes involved in root-specific flavone pathways (<i>SbPAL1</i>, <i>SbPAL2</i>, <i>SbPAL3</i>, <i>SbCCL7</i>, <i>SbCHS2</i>, <i>SbCHI</i>, <i>SbFNS2-2</i>, <i>SbCYP82D1.1</i>, and <i>SbF8H</i>) were determined at two time points (control and after 96 h of exposure). Expression levels of <i>SbPAL1</i>, <i>SbCHS2</i>, <i>SbCHI</i>, and <i>SbCYP82D1.1</i> were significantly increased following exposure to wounding stress. Antimicrobials were observed with seven normal pathogens, two multidrug-resistant pathogens, and one pathogenic yeast. Moreover, the inhibition zone sizes of these bacteria were larger in the wounded <i>S. baicalensis</i> hairy roots with higher levels of baicalin, baicalein, and wogonin than in those with lower levels of these flavones. In addition to antimicrobial activities, the wounded hairy roots exhibited stronger anti-inflammatory and antioxidant activities than the controls.</p><h3>Conclusions</h3><p>Our results indicate that postharvest wounding treatment is a good strategy to increase flavone production and enhance the antibacterial activity of <i>S. baicalensis</i> hairy root cultures.</p><h3>Graphic Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00715-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00715-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Scutellaria baicalensis roots contain root-specific flavones (baicalin, baicalein, and wogonin) exhibiting strong biological effects. Hence, this plant is considered the best plant material for hairy root system applications.
Results
In this study, we obtained hairy roots, which are considered natural genetically modified organisms, from S. baicalensis leaves in vitro using wild Agrobacterium rhizogenes (A. rhizogenes) R1000 and investigated the effects of postharvest wounding treatment on their flavone production and in vitro antimicrobial properties. Hairy roots were exposed to wounding stress, and the levels of baicalin, baicalein, and wogonin were determined using high-performance liquid chromatography (HPLC). We found that the levels of these flavones in S. baicalensis hairy roots increased after 6, 12, 24, 48, 72, and 96 h of exposure in a time-dependent manner. In particular, the highest production of three flavones was reported after exposure to 96 h of wounding stress. Furthermore, the expression levels of genes involved in root-specific flavone pathways (SbPAL1, SbPAL2, SbPAL3, SbCCL7, SbCHS2, SbCHI, SbFNS2-2, SbCYP82D1.1, and SbF8H) were determined at two time points (control and after 96 h of exposure). Expression levels of SbPAL1, SbCHS2, SbCHI, and SbCYP82D1.1 were significantly increased following exposure to wounding stress. Antimicrobials were observed with seven normal pathogens, two multidrug-resistant pathogens, and one pathogenic yeast. Moreover, the inhibition zone sizes of these bacteria were larger in the wounded S. baicalensis hairy roots with higher levels of baicalin, baicalein, and wogonin than in those with lower levels of these flavones. In addition to antimicrobial activities, the wounded hairy roots exhibited stronger anti-inflammatory and antioxidant activities than the controls.
Conclusions
Our results indicate that postharvest wounding treatment is a good strategy to increase flavone production and enhance the antibacterial activity of S. baicalensis hairy root cultures.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.