{"title":"Artificial intelligence advances in anomaly detection for telecom networks","authors":"Enerst Edozie, Aliyu Nuhu Shuaibu, Bashir Olaniyi Sadiq, Ukagwu Kelechi John","doi":"10.1007/s10462-025-11108-x","DOIUrl":null,"url":null,"abstract":"<div><p>Telecommunication networks are becoming increasingly dynamic and complex due to the massive amounts of data they process. As a result, detecting abnormal events within these networks is essential for maintaining security and ensuring seamless operation. Traditional methods of anomaly detection, which rely on rule-based systems, are no longer effective in today’s fast-evolving telecom landscape. Thus, making AI useful in addressing these shortcomings. This review critically examines the role of Artificial Intelligence (AI), particularly deep learning, in modern anomaly detection systems for telecom networks. It explores the evolution from early strategies to current AI-driven approaches, discussing the challenges, the implementation of machine learning algorithms, and practical case studies. Additionally, emerging AI technologies such as Generative Adversarial Networks (GANs) and Reinforcement Learning (RL) are highlighted for their potential to enhance anomaly detection. This review provides AI’s transformative impact on telecom anomaly detection, addressing challenges while leveraging 5G/6G, edge computing, and the Internet of Things (IoT). It recommends hybrid models, advanced data preprocessing, and self-adaptive systems to enhance robustness and reliability, enabling telecom operators to proactively manage anomalies and optimize performance in a data driven environment.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 4","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11108-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11108-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Telecommunication networks are becoming increasingly dynamic and complex due to the massive amounts of data they process. As a result, detecting abnormal events within these networks is essential for maintaining security and ensuring seamless operation. Traditional methods of anomaly detection, which rely on rule-based systems, are no longer effective in today’s fast-evolving telecom landscape. Thus, making AI useful in addressing these shortcomings. This review critically examines the role of Artificial Intelligence (AI), particularly deep learning, in modern anomaly detection systems for telecom networks. It explores the evolution from early strategies to current AI-driven approaches, discussing the challenges, the implementation of machine learning algorithms, and practical case studies. Additionally, emerging AI technologies such as Generative Adversarial Networks (GANs) and Reinforcement Learning (RL) are highlighted for their potential to enhance anomaly detection. This review provides AI’s transformative impact on telecom anomaly detection, addressing challenges while leveraging 5G/6G, edge computing, and the Internet of Things (IoT). It recommends hybrid models, advanced data preprocessing, and self-adaptive systems to enhance robustness and reliability, enabling telecom operators to proactively manage anomalies and optimize performance in a data driven environment.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.