Transfer learning in agriculture: a review

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Md Ismail Hossen, Mohammad Awrangjeb, Shirui Pan, Abdullah Al Mamun
{"title":"Transfer learning in agriculture: a review","authors":"Md Ismail Hossen,&nbsp;Mohammad Awrangjeb,&nbsp;Shirui Pan,&nbsp;Abdullah Al Mamun","doi":"10.1007/s10462-024-11081-x","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid growth of the global population has placed immense pressure on agriculture to enhance food production while addressing environmental and socioeconomic challenges such as biodiversity loss, water scarcity, and climate variability. Addressing these challenges requires adopting modern techniques and advancing agricultural research. Although some techniques, such as machine learning and deep learning, are increasingly used in agriculture, progress is constrained by the lack of large labelled datasets. This constraint arises because collecting data is often time-consuming, labour-intensive, and requires expert knowledge for data annotation. To mitigate data limitations, transfer learning (TL) offers a viable solution by allowing pre-trained models to be adapted for agricultural applications. Many researchers have demonstrated TL’s potential to advance agriculture. Despite its importance, there is a lack of a comprehensive review, which could be essential to guide researchers in this field. Given the significance and the lack of a review paper, this paper provides a review dedicated to TL in agriculture, offering three main contributions. First, we provide an in-depth background study on TL and its applications in agriculture. Second, we offer a comprehensive examination of TL-based agricultural applications, covering pre-trained models, dataset sources, input image types, implementation platforms, and TL approaches. Third, based on an exploration of the existing studies, we identify the challenges faced when applying TL in agriculture. Finally, to address the identified challenges, we recommend suggestions for future research directions.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 4","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11081-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11081-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth of the global population has placed immense pressure on agriculture to enhance food production while addressing environmental and socioeconomic challenges such as biodiversity loss, water scarcity, and climate variability. Addressing these challenges requires adopting modern techniques and advancing agricultural research. Although some techniques, such as machine learning and deep learning, are increasingly used in agriculture, progress is constrained by the lack of large labelled datasets. This constraint arises because collecting data is often time-consuming, labour-intensive, and requires expert knowledge for data annotation. To mitigate data limitations, transfer learning (TL) offers a viable solution by allowing pre-trained models to be adapted for agricultural applications. Many researchers have demonstrated TL’s potential to advance agriculture. Despite its importance, there is a lack of a comprehensive review, which could be essential to guide researchers in this field. Given the significance and the lack of a review paper, this paper provides a review dedicated to TL in agriculture, offering three main contributions. First, we provide an in-depth background study on TL and its applications in agriculture. Second, we offer a comprehensive examination of TL-based agricultural applications, covering pre-trained models, dataset sources, input image types, implementation platforms, and TL approaches. Third, based on an exploration of the existing studies, we identify the challenges faced when applying TL in agriculture. Finally, to address the identified challenges, we recommend suggestions for future research directions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信