The effect of positional deuterium substitution on the acceptor moiety for TADF†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Da Yeon Shin, Jun Sung Lee, Jeong-Yeol Yoo, Jong-Kwan Bin and Chil Won Lee
{"title":"The effect of positional deuterium substitution on the acceptor moiety for TADF†","authors":"Da Yeon Shin, Jun Sung Lee, Jeong-Yeol Yoo, Jong-Kwan Bin and Chil Won Lee","doi":"10.1039/D4TC04067H","DOIUrl":null,"url":null,"abstract":"<p >Despite the successful commercialization of organic light-emitting diodes (OLEDs), achieving high efficiency and long lifespan in blue OLEDs often requires device structures that incorporate multiple layers featuring two or more blue-emitting layers, highlighting the ongoing challenge of achieving deep-blue OLEDs with extended lifetime. Significant improvements in lifetime have been demonstrated in blue thermally activated delayed fluorescent (TADF) OLEDs by utilizing 5CzBN with positional deuteration. We synthesized three emitters and observed a gradual increase in T<small><sub>60</sub></small> based on the positioning of benzonitrile as the acceptor, generally reflecting the molecular design of TADF systems such as the donor–π–acceptor configuration. To investigate the effects of deuteration, we measured the decrease in photoluminescence (PL) efficiency following UV irradiation to induce photodegradation. Additionally, we fabricated devices to confirm stability during operation. The photoluminescence (PL) efficiency and lifetime depend on the positional deuteration of the acceptor core. The 5CzBN-D(<em>o</em>,<em>p</em>) emitter, which is deutero-substituted, exhibited greater efficiency and a longer lifespan than 5CzBN-D(<em>m</em>). After 60 minutes of UV exposure, the decrease in PL for 5CzBN-D(<em>o</em>,<em>p</em>) was 53.4%, whereas for 5CzBN-D(<em>m</em>) it was 68%. Furthermore, the lifetime (LT<small><sub>60</sub></small>) of 5CzBN-D(<em>o</em>,<em>p</em>) was 4.61 times longer than that of 5CzBN-D(<em>m</em>). These results indicate that the efficiency and lifetime in donor–π–acceptor chemical structures depend significantly on the position of the core with a strongly electron-withdrawing group.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 5","pages":" 2367-2377"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04067h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the successful commercialization of organic light-emitting diodes (OLEDs), achieving high efficiency and long lifespan in blue OLEDs often requires device structures that incorporate multiple layers featuring two or more blue-emitting layers, highlighting the ongoing challenge of achieving deep-blue OLEDs with extended lifetime. Significant improvements in lifetime have been demonstrated in blue thermally activated delayed fluorescent (TADF) OLEDs by utilizing 5CzBN with positional deuteration. We synthesized three emitters and observed a gradual increase in T60 based on the positioning of benzonitrile as the acceptor, generally reflecting the molecular design of TADF systems such as the donor–π–acceptor configuration. To investigate the effects of deuteration, we measured the decrease in photoluminescence (PL) efficiency following UV irradiation to induce photodegradation. Additionally, we fabricated devices to confirm stability during operation. The photoluminescence (PL) efficiency and lifetime depend on the positional deuteration of the acceptor core. The 5CzBN-D(o,p) emitter, which is deutero-substituted, exhibited greater efficiency and a longer lifespan than 5CzBN-D(m). After 60 minutes of UV exposure, the decrease in PL for 5CzBN-D(o,p) was 53.4%, whereas for 5CzBN-D(m) it was 68%. Furthermore, the lifetime (LT60) of 5CzBN-D(o,p) was 4.61 times longer than that of 5CzBN-D(m). These results indicate that the efficiency and lifetime in donor–π–acceptor chemical structures depend significantly on the position of the core with a strongly electron-withdrawing group.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信