Two dimensional CuInP2S6/h-BN/MoTe2 van der Waals heterostructure phototransistors with double gate control†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sina Li, Junjie Zhou, Jingxian Xiong, Sixian Yang, Jielian Zhang, Weijun Fan and Jingbo Li
{"title":"Two dimensional CuInP2S6/h-BN/MoTe2 van der Waals heterostructure phototransistors with double gate control†","authors":"Sina Li, Junjie Zhou, Jingxian Xiong, Sixian Yang, Jielian Zhang, Weijun Fan and Jingbo Li","doi":"10.1039/D4TC02616K","DOIUrl":null,"url":null,"abstract":"<p >Ferroelectric materials have demonstrated significant potential in the manipulation of optoelectronic processes in emerging device architectures. However, research exploring the synergy between ferroelectric materials and two-dimensional semiconductor materials, as well as direct modulation of the interface band alignment of two-dimensional semiconductor materials in heterostructures, remains limited. Here, we report a ferroelectric photodetector composed of a CuInP<small><sub>2</sub></small>S<small><sub>6</sub></small> gate, an h-BN dielectric layer, and a MoTe<small><sub>2</sub></small> channel. Due to the presence of directional ferroelectric spontaneous polarization charges under an applied electric field, the interface band structure is effectively modulated, greatly enhancing the generation, separation, and transport efficiency of photo-generated electron–hole pairs. Compared to non-ferroelectric back-gated modulation (Si), the photocurrent is boosted by an order of magnitude under top-gate modulation, while the dark current is effectively suppressed. The ferroelectric photodetector exhibits a high responsivity modulation of 6.07 A W<small><sup>−1</sup></small> and a high detection rate of 5.67 × 10<small><sup>11</sup></small> jones. Interestingly, clockwise hysteresis is observed under both single top-gate (<em>V</em><small><sub>TG</sub></small>) and silicon dioxide back-gate (<em>V</em><small><sub>BG</sub></small>) modulation, attributed to the charge dynamics at the interface and gate coupling effects. This work reveals the substantial potential of the detector for high-performance optical sensing through the modulation of the interface band structure of semiconductor junctions by two-dimensional ferroelectric materials.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 5","pages":" 2378-2387"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc02616k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroelectric materials have demonstrated significant potential in the manipulation of optoelectronic processes in emerging device architectures. However, research exploring the synergy between ferroelectric materials and two-dimensional semiconductor materials, as well as direct modulation of the interface band alignment of two-dimensional semiconductor materials in heterostructures, remains limited. Here, we report a ferroelectric photodetector composed of a CuInP2S6 gate, an h-BN dielectric layer, and a MoTe2 channel. Due to the presence of directional ferroelectric spontaneous polarization charges under an applied electric field, the interface band structure is effectively modulated, greatly enhancing the generation, separation, and transport efficiency of photo-generated electron–hole pairs. Compared to non-ferroelectric back-gated modulation (Si), the photocurrent is boosted by an order of magnitude under top-gate modulation, while the dark current is effectively suppressed. The ferroelectric photodetector exhibits a high responsivity modulation of 6.07 A W−1 and a high detection rate of 5.67 × 1011 jones. Interestingly, clockwise hysteresis is observed under both single top-gate (VTG) and silicon dioxide back-gate (VBG) modulation, attributed to the charge dynamics at the interface and gate coupling effects. This work reveals the substantial potential of the detector for high-performance optical sensing through the modulation of the interface band structure of semiconductor junctions by two-dimensional ferroelectric materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信