Dopant-free tert-butyl Zn(ii) phthalocyanines: the impact of substitution on their photophysical properties and their role in perovskite solar cells†

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mahdi Gassara, José Garcés-Garcés, Luis Lezama, Javier Ortiz, Fernando Fernández-Lázaro, Samrana Kazim, Ángela Sastre-Santos and Shahzada Ahmad
{"title":"Dopant-free tert-butyl Zn(ii) phthalocyanines: the impact of substitution on their photophysical properties and their role in perovskite solar cells†","authors":"Mahdi Gassara, José Garcés-Garcés, Luis Lezama, Javier Ortiz, Fernando Fernández-Lázaro, Samrana Kazim, Ángela Sastre-Santos and Shahzada Ahmad","doi":"10.1039/D4TC04013A","DOIUrl":null,"url":null,"abstract":"<p >We synthesized molecular hole-transporting materials (HTMs) featuring a zinc phthalocyanine (ZnPc) central core and modulated the non-peripheral position with different numbers of <em>tert</em>-butyl groups. The synthesized molecules were then integrated into the fabrication of perovskite solar cells to evaluate their efficacy. We studied four different undoped ZnPcs with four (<strong>ZnPc 1</strong>), three (<strong>ZnPc 2</strong>), two (<strong>ZnPc 3</strong>), and one (<strong>ZnPc 4</strong>) <em>tert</em>-butyl group as hole transport materials in the n–i–p configuration. Among them, <strong>ZnPc 1</strong> registered the best power conversion efficiency of 15.50%, an open-circuit voltage (<em>V</em><small><sub>oc</sub></small>) of 932.9 mV, a short-circuit current density (<em>J</em><small><sub>sc</sub></small>) of 24.26 mA cm<small><sup>−2</sup></small>, and a fill factor (FF) of 68.46%. This was followed by <strong>ZnPc 2</strong> which achieved a modest 7.98% performance. The surface microstructure is greatly influenced by the type of molecule and it evolves from a compact granular to a fibrillar structure. Furthermore, the devices with <strong>ZnPc 1</strong> showed enhanced stability under an ambient atmosphere comparable to Spiro-OMeTAD.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 4","pages":" 1704-1712"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04013a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We synthesized molecular hole-transporting materials (HTMs) featuring a zinc phthalocyanine (ZnPc) central core and modulated the non-peripheral position with different numbers of tert-butyl groups. The synthesized molecules were then integrated into the fabrication of perovskite solar cells to evaluate their efficacy. We studied four different undoped ZnPcs with four (ZnPc 1), three (ZnPc 2), two (ZnPc 3), and one (ZnPc 4) tert-butyl group as hole transport materials in the n–i–p configuration. Among them, ZnPc 1 registered the best power conversion efficiency of 15.50%, an open-circuit voltage (Voc) of 932.9 mV, a short-circuit current density (Jsc) of 24.26 mA cm−2, and a fill factor (FF) of 68.46%. This was followed by ZnPc 2 which achieved a modest 7.98% performance. The surface microstructure is greatly influenced by the type of molecule and it evolves from a compact granular to a fibrillar structure. Furthermore, the devices with ZnPc 1 showed enhanced stability under an ambient atmosphere comparable to Spiro-OMeTAD.

Abstract Image

无掺杂叔丁基Zn(ii)酞菁:取代对其光物理性质的影响及其在钙钛矿太阳能电池中的作用
我们合成了以酞菁锌(ZnPc)为核心的分子空穴传输材料(HTMs),并用不同数量的叔丁基来调节其非外围位置。然后将合成的分子整合到钙钛矿太阳能电池的制造中,以评估其功效。我们研究了四种不同的未掺杂ZnPc,它们分别是4个(ZnPc 1)、3个(ZnPc 2)、2个(ZnPc 3)和1个(ZnPc 4)叔丁基作为n-i-p构型的空穴输运材料。其中ZnPc 1的功率转换效率最高,为15.50%,开路电压(Voc)为932.9 mV,短路电流密度(Jsc)为24.26 mA cm−2,填充系数(FF)为68.46%。紧随其后的是ZnPc 2,它取得了适度的7.98%的性能。其表面微观结构受分子类型的影响较大,由致密的颗粒状结构演变为纤维状结构。此外,具有ZnPc - 1的器件在与Spiro-OMeTAD相当的环境气氛下表现出更高的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信