Centimeter-level double perovskite single crystals with strong interlaminar hydrogen bonds for high-performance X-ray detection†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Linjie Wei, Yi Liu, Yu Ma, Qingshun Fan, Liwei Tang, Jingtian Zhang, Junhua Luo and Zhihua Sun
{"title":"Centimeter-level double perovskite single crystals with strong interlaminar hydrogen bonds for high-performance X-ray detection†","authors":"Linjie Wei, Yi Liu, Yu Ma, Qingshun Fan, Liwei Tang, Jingtian Zhang, Junhua Luo and Zhihua Sun","doi":"10.1039/D4TC04488F","DOIUrl":null,"url":null,"abstract":"<p >Ruddlesden–Popper (RP) hybrid perovskites hold great potential for X-ray detection, while the inherent van der Waals gap hinders the preparation of large single crystals. Therefore, reducing the interlaminar energy gap in 2D RP-type perovskites is crucial for exploiting high-performance crystal-based X-ray detectors. We here present a new 2D RP-type double perovskite, (<em>t</em>-ACH)<small><sub>4</sub></small>AgBiI<small><sub>8</sub></small>·H<small><sub>2</sub></small>O (<strong>1</strong>, <em>t</em>-ACH = 4-aminomethyl-1-cyclohexane carboxylate), of which the intercalated carboxylate spacers form strong interlaminar O–H⋯O hydrogen bonds and favor the elimination of the van der Waals energy gap. This enhanced interlaminar connection in its quasi-2D motif facilitates the growth of large single crystals. As expected, bulk high-quality single crystals of <strong>1</strong> with a centimeter size up to 17 × 12 × 8 mm<small><sup>3</sup></small> were facilely obtained, which exhibit notable semiconductor properties of low trap density (∼6.57 × 10<small><sup>10</sup></small> cm<small><sup>−3</sup></small>) and large mobility-lifetime (∼0.77 × 10<small><sup>−3</sup></small> cm<small><sup>2</sup></small> V<small><sup>−1</sup></small>) in the direction vertical to the (−100) plane. Particularly, the single crystal-based detector of <strong>1</strong> shows prominent performance in X-ray detection, including a low dark current drift of 1.97 × 10<small><sup>−7</sup></small> nA cm<small><sup>−1</sup></small> s<small><sup>−1</sup></small> V<small><sup>−1</sup></small>, a high sensitivity of 3221.6 μC Gy<small><sub>air</sub></small><small><sup>−1</sup></small> cm<small><sup>−2</sup></small>, and a low detection limit of 12 nGy<small><sub>air</sub></small> s<small><sup>−1</sup></small>. The figure-of-merit of detection sensitivity is approximately 180 times than the commercial a-Se X-ray detectors. This intercalation of strong O–H⋯O hydrogen bonds reduces the van der Waals gap in 2D RP-type perovskites, which serves as an effective strategy to explore new eco-friendly perovskites for high-performance photoelectric applications.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 4","pages":" 1675-1679"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04488f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ruddlesden–Popper (RP) hybrid perovskites hold great potential for X-ray detection, while the inherent van der Waals gap hinders the preparation of large single crystals. Therefore, reducing the interlaminar energy gap in 2D RP-type perovskites is crucial for exploiting high-performance crystal-based X-ray detectors. We here present a new 2D RP-type double perovskite, (t-ACH)4AgBiI8·H2O (1, t-ACH = 4-aminomethyl-1-cyclohexane carboxylate), of which the intercalated carboxylate spacers form strong interlaminar O–H⋯O hydrogen bonds and favor the elimination of the van der Waals energy gap. This enhanced interlaminar connection in its quasi-2D motif facilitates the growth of large single crystals. As expected, bulk high-quality single crystals of 1 with a centimeter size up to 17 × 12 × 8 mm3 were facilely obtained, which exhibit notable semiconductor properties of low trap density (∼6.57 × 1010 cm−3) and large mobility-lifetime (∼0.77 × 10−3 cm2 V−1) in the direction vertical to the (−100) plane. Particularly, the single crystal-based detector of 1 shows prominent performance in X-ray detection, including a low dark current drift of 1.97 × 10−7 nA cm−1 s−1 V−1, a high sensitivity of 3221.6 μC Gyair−1 cm−2, and a low detection limit of 12 nGyair s−1. The figure-of-merit of detection sensitivity is approximately 180 times than the commercial a-Se X-ray detectors. This intercalation of strong O–H⋯O hydrogen bonds reduces the van der Waals gap in 2D RP-type perovskites, which serves as an effective strategy to explore new eco-friendly perovskites for high-performance photoelectric applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信