Multifunctional azo-BODIPY-functionalised upconversion nanoparticles as sensors of hypoxia in biological environments†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jingke Yao, Silvia Simón-Fuente, Gabriel Lopez-Peña, Silvia Gómez-Pastor, Santiago Guisan-Ceinos, Riccardo Marin, Emma Martín Rodríguez, Daniel Jaque, Francisco Sanz-Rodríguez, Maria Ribagorda and Dirk H. Ortgies
{"title":"Multifunctional azo-BODIPY-functionalised upconversion nanoparticles as sensors of hypoxia in biological environments†","authors":"Jingke Yao, Silvia Simón-Fuente, Gabriel Lopez-Peña, Silvia Gómez-Pastor, Santiago Guisan-Ceinos, Riccardo Marin, Emma Martín Rodríguez, Daniel Jaque, Francisco Sanz-Rodríguez, Maria Ribagorda and Dirk H. Ortgies","doi":"10.1039/D4TC03302G","DOIUrl":null,"url":null,"abstract":"<p >In this work, a hypoxia-sensitive nanoprobe is developed by coating the surface of upconverting core/shell nanoparticles (NaGdF<small><sub>4</sub></small>: 2%Yb<small><sup>3+</sup></small>, 3%Nd<small><sup>3+</sup></small>, 0.2%Tm<small><sup>3+</sup></small>/NaYF<small><sub>4</sub></small>) with a non-fluorescent azo-dye based on a boron-dipyrromethene functionalized azo compound. Azo-dyes are able to quench fluorescence emissions due to their N<img>N azo bond, which results in the absorption of most visible emissions of the nanoparticles. However, in a biological environment suffering hypoxia, the azo bond is reduced, which allows the recovery of the nanoparticles’ upconversion emissions. Thereby a near-infrared excitable sensor with an azo-dye is created and for the first time not only enables excitation <em>via</em> NIR at biocompatible 808 nm but also continuous imaging and tracking of the probe in the infrared due to NIR-emissions enabled by the dopant combination since quenching only occurs in the visible. These multifunctional (imaging and sensing) nanoparticles are characterized, their behaviour in reductive and hypoxic environments is determined and the detection of reducing conditions in a hypoxic environment is demonstrated in cells.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 4","pages":" 1972-1981"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc03302g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a hypoxia-sensitive nanoprobe is developed by coating the surface of upconverting core/shell nanoparticles (NaGdF4: 2%Yb3+, 3%Nd3+, 0.2%Tm3+/NaYF4) with a non-fluorescent azo-dye based on a boron-dipyrromethene functionalized azo compound. Azo-dyes are able to quench fluorescence emissions due to their NN azo bond, which results in the absorption of most visible emissions of the nanoparticles. However, in a biological environment suffering hypoxia, the azo bond is reduced, which allows the recovery of the nanoparticles’ upconversion emissions. Thereby a near-infrared excitable sensor with an azo-dye is created and for the first time not only enables excitation via NIR at biocompatible 808 nm but also continuous imaging and tracking of the probe in the infrared due to NIR-emissions enabled by the dopant combination since quenching only occurs in the visible. These multifunctional (imaging and sensing) nanoparticles are characterized, their behaviour in reductive and hypoxic environments is determined and the detection of reducing conditions in a hypoxic environment is demonstrated in cells.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信