Optimizing the Deployment of Tiny Transformers on Low-Power MCUs

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Victor Jean-Baptiste Jung;Alessio Burrello;Moritz Scherer;Francesco Conti;Luca Benini
{"title":"Optimizing the Deployment of Tiny Transformers on Low-Power MCUs","authors":"Victor Jean-Baptiste Jung;Alessio Burrello;Moritz Scherer;Francesco Conti;Luca Benini","doi":"10.1109/TC.2024.3500360","DOIUrl":null,"url":null,"abstract":"Transformer networks are rapidly becoming State of the Art (SotA) in many fields, such as Natural Language Processing (NLP) and Computer Vision (CV). Similarly to Convolutional Neural Networks (CNNs), there is a strong push for deploying Transformer models at the extreme edge, ultimately fitting the tiny power budget and memory footprint of Micro-Controller Units (MCUs). However, the early approaches in this direction are mostly ad-hoc, platform, and model-specific. This work aims to enable and optimize the flexible, multi-platform deployment of encoder Tiny Transformers on commercial MCUs. We propose a complete framework to perform end-to-end deployment of Transformer models onto single and multi-core MCUs. Our framework provides an optimized library of kernels to maximize data reuse and avoid unnecessary data marshaling operations into the crucial attention block. A novel Multi-Head Self-Attention (MHSA) inference schedule, named Fused-Weight Self-Attention (FWSA), is introduced, fusing the linear projection weights offline to further reduce the number of operations and parameters. Furthermore, to mitigate the memory peak reached by the computation of the attention map, we present a Depth-First Tiling (DFT) scheme for MHSA tailored for cache-less MCU devices that allows splitting the computation of the attention map into successive steps, never materializing the whole matrix in memory. We evaluate our framework on three different MCU classes exploiting ARM and RISC-V Instruction Set Architecture (ISA), namely the STM32H7 (ARM Cortex M7), the STM32L4 (ARM Cortex M4), and GAP9 (RV32IMC-XpulpV2). We reach an average of 4.79 <inline-formula><tex-math>$\\times$</tex-math></inline-formula> and 2.0 <inline-formula><tex-math>$\\times$</tex-math></inline-formula> lower latency compared to SotA libraries CMSIS-NN (ARM) and PULP-NN (RISC-V), respectively. Moreover, we show that our MHSA depth-first tiling scheme reduces the memory peak by up to 6.19 <inline-formula><tex-math>$\\times$</tex-math></inline-formula>, while the fused-weight attention can reduce the runtime by 1.53 <inline-formula><tex-math>$\\times$</tex-math></inline-formula>, and number of parameters by 25%. Leveraging the optimizations proposed in this work, we run end-to-end inference of three SotA Tiny Transformers for three applications characterized by different input dimensions and network hyperparameters. We report significant improvements across the networks: for instance, when executing a transformer block for the task of radar-based hand-gesture recognition on GAP9, we achieve a latency of <inline-formula><tex-math>$0.14 \\textrm{ms}$</tex-math></inline-formula> and energy consumption of <inline-formula><tex-math>$4.92 \\boldsymbol{\\mu}\\textrm{J}$</tex-math></inline-formula>, 2.32 <inline-formula><tex-math>$\\times$</tex-math></inline-formula> lower than the SotA PULP-NN library on the same platform.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 2","pages":"526-541"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10755971/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Transformer networks are rapidly becoming State of the Art (SotA) in many fields, such as Natural Language Processing (NLP) and Computer Vision (CV). Similarly to Convolutional Neural Networks (CNNs), there is a strong push for deploying Transformer models at the extreme edge, ultimately fitting the tiny power budget and memory footprint of Micro-Controller Units (MCUs). However, the early approaches in this direction are mostly ad-hoc, platform, and model-specific. This work aims to enable and optimize the flexible, multi-platform deployment of encoder Tiny Transformers on commercial MCUs. We propose a complete framework to perform end-to-end deployment of Transformer models onto single and multi-core MCUs. Our framework provides an optimized library of kernels to maximize data reuse and avoid unnecessary data marshaling operations into the crucial attention block. A novel Multi-Head Self-Attention (MHSA) inference schedule, named Fused-Weight Self-Attention (FWSA), is introduced, fusing the linear projection weights offline to further reduce the number of operations and parameters. Furthermore, to mitigate the memory peak reached by the computation of the attention map, we present a Depth-First Tiling (DFT) scheme for MHSA tailored for cache-less MCU devices that allows splitting the computation of the attention map into successive steps, never materializing the whole matrix in memory. We evaluate our framework on three different MCU classes exploiting ARM and RISC-V Instruction Set Architecture (ISA), namely the STM32H7 (ARM Cortex M7), the STM32L4 (ARM Cortex M4), and GAP9 (RV32IMC-XpulpV2). We reach an average of 4.79 $\times$ and 2.0 $\times$ lower latency compared to SotA libraries CMSIS-NN (ARM) and PULP-NN (RISC-V), respectively. Moreover, we show that our MHSA depth-first tiling scheme reduces the memory peak by up to 6.19 $\times$, while the fused-weight attention can reduce the runtime by 1.53 $\times$, and number of parameters by 25%. Leveraging the optimizations proposed in this work, we run end-to-end inference of three SotA Tiny Transformers for three applications characterized by different input dimensions and network hyperparameters. We report significant improvements across the networks: for instance, when executing a transformer block for the task of radar-based hand-gesture recognition on GAP9, we achieve a latency of $0.14 \textrm{ms}$ and energy consumption of $4.92 \boldsymbol{\mu}\textrm{J}$, 2.32 $\times$ lower than the SotA PULP-NN library on the same platform.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信