Xiaohang Wang;Yifan Wang;Yingtao Jiang;Amit Kumar Singh;Mei Yang
{"title":"On Task Mapping in Multi-chiplet Based Many-Core Systems to Optimize Inter- and Intra-chiplet Communications","authors":"Xiaohang Wang;Yifan Wang;Yingtao Jiang;Amit Kumar Singh;Mei Yang","doi":"10.1109/TC.2024.3500354","DOIUrl":null,"url":null,"abstract":"Multi-chiplet system design, by integrating multiple chiplets/dielets within a single package, has emerged as a promising paradigm in the post-Moore era. This paper introduces a novel task mapping algorithm for multi-chiplet based many-core systems, addressing the unique challenges posed by intra- and inter-chiplet communications under power and thermal constraints. Traditional task mapping algorithms fail to account for the latency and bandwidth differences between these communications, leading to sub-optimal performance in multi-chiplet systems. Our proposed algorithm employs a two-step process: (1) task assignment to chiplets using binary linear programming, leveraging a totally unimodular constraint matrix, and (2) intra-chiplet mapping that minimizes communication latency while considering both thermal and power constraints. This method strategically positions tasks with extensive inter-chiplet communication near interface nodes and centralizes those with predominant intra-chiplet communication. Experimental results demonstrate that the proposed algorithm outperforms existing methods (DAR and IOA) with a 37.5% and 24.7% reduction in execution time, respectively. Communication latency is also reduced by up to 43.2% and 32.9%, compared to DAR and IOA. These findings affirm that the proposed task mapping algorithm aligns well with the characteristics of multi-chiplet based many-core systems, and thus improves optimal performance.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 2","pages":"510-525"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10756730/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-chiplet system design, by integrating multiple chiplets/dielets within a single package, has emerged as a promising paradigm in the post-Moore era. This paper introduces a novel task mapping algorithm for multi-chiplet based many-core systems, addressing the unique challenges posed by intra- and inter-chiplet communications under power and thermal constraints. Traditional task mapping algorithms fail to account for the latency and bandwidth differences between these communications, leading to sub-optimal performance in multi-chiplet systems. Our proposed algorithm employs a two-step process: (1) task assignment to chiplets using binary linear programming, leveraging a totally unimodular constraint matrix, and (2) intra-chiplet mapping that minimizes communication latency while considering both thermal and power constraints. This method strategically positions tasks with extensive inter-chiplet communication near interface nodes and centralizes those with predominant intra-chiplet communication. Experimental results demonstrate that the proposed algorithm outperforms existing methods (DAR and IOA) with a 37.5% and 24.7% reduction in execution time, respectively. Communication latency is also reduced by up to 43.2% and 32.9%, compared to DAR and IOA. These findings affirm that the proposed task mapping algorithm aligns well with the characteristics of multi-chiplet based many-core systems, and thus improves optimal performance.
期刊介绍:
The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.