Hossam A. Gabbar;Elena Villalobos Herra;Daniel Galvan-Perez;Juan Eduardo Esquivel Cruz;Mustafa A. Aldeeb
{"title":"Semiautomated Control System of Microwave Plasma Torch for Waste-to-Energy Treatment","authors":"Hossam A. Gabbar;Elena Villalobos Herra;Daniel Galvan-Perez;Juan Eduardo Esquivel Cruz;Mustafa A. Aldeeb","doi":"10.1109/TPS.2024.3520485","DOIUrl":null,"url":null,"abstract":"Integrating microwave plasma torches (MWPTs) into waste-to-energy systems offers a promising approach to address the challenges of municipal solid waste (MSW) management while enabling efficient energy recovery. However, designing an effective control system for MWPTs is complex and not widely available in current markets. This article presents a novel control system based on a programmable logic controller (PLC), specifically developed to semiautomate the operation of atmospheric MWPT. The system uses a proportional-integral–derivative (PID) control algorithm to precisely regulate the gas flow and plasma conditions, while MODBUS communication technology ensures smooth interaction between components. By addressing key challenges such as unstable plasma ignition and maintaining operational reliability, the proposed system reduces manual intervention, enhances operator safety, and improves scalability for MWPT applications. This work advances the understanding and implementation of automated control in MWPT-based systems, contributing significantly to sustainable waste-to-energy solutions. The proposed solution reduces manual intervention, improves operator safety, and increases the scalability of MWPT applications by addressing important issues such as unstable plasma ignition and maintaining operational reliability. This work contributes significantly to sustainable waste-to-energy solutions by enhancing our understanding and ability to use automated control in MWPT-based systems.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 12","pages":"5573-5580"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10818376/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating microwave plasma torches (MWPTs) into waste-to-energy systems offers a promising approach to address the challenges of municipal solid waste (MSW) management while enabling efficient energy recovery. However, designing an effective control system for MWPTs is complex and not widely available in current markets. This article presents a novel control system based on a programmable logic controller (PLC), specifically developed to semiautomate the operation of atmospheric MWPT. The system uses a proportional-integral–derivative (PID) control algorithm to precisely regulate the gas flow and plasma conditions, while MODBUS communication technology ensures smooth interaction between components. By addressing key challenges such as unstable plasma ignition and maintaining operational reliability, the proposed system reduces manual intervention, enhances operator safety, and improves scalability for MWPT applications. This work advances the understanding and implementation of automated control in MWPT-based systems, contributing significantly to sustainable waste-to-energy solutions. The proposed solution reduces manual intervention, improves operator safety, and increases the scalability of MWPT applications by addressing important issues such as unstable plasma ignition and maintaining operational reliability. This work contributes significantly to sustainable waste-to-energy solutions by enhancing our understanding and ability to use automated control in MWPT-based systems.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.