{"title":"20–26-GHz CMOS PA With High Pout and OP1 dB Using a 1:2 Capacitance-Ratio-Equivalent Power Combiner","authors":"Jin-Fa Chang","doi":"10.1109/LSSC.2025.3529347","DOIUrl":null,"url":null,"abstract":"We demonstrate a four-way wide-band power amplifier (PA1) with a 1:2 capacitance-ratio-equivalent power combiner (PC) and a dynamic-threshold-voltage MOSFET with a resistor (DTMOS-R) using a 90-nm CMOS. Another PA (PA2) without a DTMOS-R using low-loss micro-strip line inductors replaced with a PC is demonstrated for contrast. A low-loss PC is realized using equal <inline-formula> <tex-math>$\\lambda $ </tex-math></inline-formula>/4 spiral transmission line inductors based on a <inline-formula> <tex-math>$\\lambda $ </tex-math></inline-formula>/9 one (with a 1:2 capacitance ratio involving Cp1 and Cp2) for low-loss output-stage matching. The output power of the output stage of PA1, with low-threshold voltage (<inline-formula> <tex-math>$V_{\\mathrm { th}}$ </tex-math></inline-formula>) due to the DTMOS-R and low Rds based on the parallel four-way output, is enhanced using a PC. Between 20–26 GHz, PA1 achieves a prominent S21 of 23.2 dB, peak power-added-efficiency (PAE) between 20.8%–29.7%, and saturation output power between 19.9–21.2 dBm. Moreover, the output 1-dB compression point (OP1dB) is 16–20.4 dBm between 20–26 GHz. Using the PC and DTMOS-R yields the bulk CMOS PA’s high performance (Pout, PAE, and OP1dB), comparable to recent state-of-the-art millimeter-wave PAs, i.e., SOI/SiGe processes.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"53-56"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10839330/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate a four-way wide-band power amplifier (PA1) with a 1:2 capacitance-ratio-equivalent power combiner (PC) and a dynamic-threshold-voltage MOSFET with a resistor (DTMOS-R) using a 90-nm CMOS. Another PA (PA2) without a DTMOS-R using low-loss micro-strip line inductors replaced with a PC is demonstrated for contrast. A low-loss PC is realized using equal $\lambda $ /4 spiral transmission line inductors based on a $\lambda $ /9 one (with a 1:2 capacitance ratio involving Cp1 and Cp2) for low-loss output-stage matching. The output power of the output stage of PA1, with low-threshold voltage ($V_{\mathrm { th}}$ ) due to the DTMOS-R and low Rds based on the parallel four-way output, is enhanced using a PC. Between 20–26 GHz, PA1 achieves a prominent S21 of 23.2 dB, peak power-added-efficiency (PAE) between 20.8%–29.7%, and saturation output power between 19.9–21.2 dBm. Moreover, the output 1-dB compression point (OP1dB) is 16–20.4 dBm between 20–26 GHz. Using the PC and DTMOS-R yields the bulk CMOS PA’s high performance (Pout, PAE, and OP1dB), comparable to recent state-of-the-art millimeter-wave PAs, i.e., SOI/SiGe processes.