{"title":"Dynamic content-cached satellite selection and routing for power minimization in LEO satellite networks","authors":"Jeongmin Seo , Dongho Ham , Jeongho Kwak","doi":"10.1016/j.icte.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient delivery of content to areas where terrestrial Internet service is unavailable can be possible via content caching at low earth orbit (LEO) satellites. Cached content in several LEO satellites must be delivered via inter-satellite links (ISLs) with appropriate routing techniques. Until now, content caching and routing techniques have been optimized independently. To tackle this issue, the optimization of selecting a content-cached satellite and routing is jointly performed, using the example of Earth observation data cached across multiple satellites. In this paper, we first formulate a dynamic power minimization problem constrained by the queue stability of all LEO satellites, where the control variables are the selection of content-cached satellite and routing in every satellite. To solve this long-term time-averaged problem, we leverage Lyapunov optimization framework to transform the original problem into a series of slot-by-slot problems. Moreover, we prove that the average power consumption and the average queue backlog by the proposed algorithm can be upper-bounded via theoretical analysis. Finally, through extensive simulations, we demonstrate that our proposed algorithm surpasses existing independent content-retrieval algorithms in terms of power consumption, queue backlog, and fairness.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 6","pages":"Pages 1199-1205"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524001073","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient delivery of content to areas where terrestrial Internet service is unavailable can be possible via content caching at low earth orbit (LEO) satellites. Cached content in several LEO satellites must be delivered via inter-satellite links (ISLs) with appropriate routing techniques. Until now, content caching and routing techniques have been optimized independently. To tackle this issue, the optimization of selecting a content-cached satellite and routing is jointly performed, using the example of Earth observation data cached across multiple satellites. In this paper, we first formulate a dynamic power minimization problem constrained by the queue stability of all LEO satellites, where the control variables are the selection of content-cached satellite and routing in every satellite. To solve this long-term time-averaged problem, we leverage Lyapunov optimization framework to transform the original problem into a series of slot-by-slot problems. Moreover, we prove that the average power consumption and the average queue backlog by the proposed algorithm can be upper-bounded via theoretical analysis. Finally, through extensive simulations, we demonstrate that our proposed algorithm surpasses existing independent content-retrieval algorithms in terms of power consumption, queue backlog, and fairness.
期刊介绍:
The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.