Leila Ranjbar , Hossein Parsaei , Mohammad Mehdi Movahedi , Sam Sharifzadeh Javidi
{"title":"Improving spike sorting efficiency with separability index and spectral clustering","authors":"Leila Ranjbar , Hossein Parsaei , Mohammad Mehdi Movahedi , Sam Sharifzadeh Javidi","doi":"10.1016/j.medengphy.2024.104265","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the effectiveness of spectral clustering for spike sorting and proposes a Separability Index to measure the difficulty of spike sorting for a signal. The accuracy of spectral clustering is evaluated using different feature sets, including raw samples, first and second derivatives, and principal components analysis (PCA), and compared to two previously published methods. The results obtained over a dataset including 16 signals show that raw samples, with an average accuracy of 73.84 %, are effective for spectral clustering-based spike sorting. The analysis demonstrates that the proposed Separability Index can be utilized to classify signals beforehand, reducing the cost and processing time of large datasets. Furthermore, the proposed index can reveal spike sorting difficulty, making it a valuable tool for comparing the performance of various spike sorting methods in depth. The proposed method has higher accuracy (up to 23 %) compared to two previously published methods, and its accuracy is aligned with the Separability Index (correlation coefficient = 0.71). Overall, this study contributes to the field of spike sorting and offers insights into leveraging spectral clustering for this task.</div></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":"135 ","pages":"Article 104265"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001668","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the effectiveness of spectral clustering for spike sorting and proposes a Separability Index to measure the difficulty of spike sorting for a signal. The accuracy of spectral clustering is evaluated using different feature sets, including raw samples, first and second derivatives, and principal components analysis (PCA), and compared to two previously published methods. The results obtained over a dataset including 16 signals show that raw samples, with an average accuracy of 73.84 %, are effective for spectral clustering-based spike sorting. The analysis demonstrates that the proposed Separability Index can be utilized to classify signals beforehand, reducing the cost and processing time of large datasets. Furthermore, the proposed index can reveal spike sorting difficulty, making it a valuable tool for comparing the performance of various spike sorting methods in depth. The proposed method has higher accuracy (up to 23 %) compared to two previously published methods, and its accuracy is aligned with the Separability Index (correlation coefficient = 0.71). Overall, this study contributes to the field of spike sorting and offers insights into leveraging spectral clustering for this task.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.