{"title":"Prediction of permissioned blockchain performance for resource scaling configurations","authors":"Seungwoo Jung , Yeonho Yoo , Gyeongsik Yang, Chuck Yoo","doi":"10.1016/j.icte.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>Blockchain is increasingly offered as blockchain-as-a-service (BaaS) by cloud service providers. However, configuring BaaS appropriately for optimal performance and reliability resorts to try-and-error. A key challenge is that BaaS is often perceived as a “black-box,” leading to uncertainties in performance and resource provisioning. Previous studies attempted to address this challenge; however, the impacts of both vertical and horizontal scaling remain elusive. To this end, we present machine learning-based models to predict network reliability and throughput based on scaling configurations. In our evaluation, the models exhibit prediction errors of <span><math><mo>∼</mo></math></span>1.9%, which is highly accurate and can be applied in the real-world.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 6","pages":"Pages 1253-1258"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524001061","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Blockchain is increasingly offered as blockchain-as-a-service (BaaS) by cloud service providers. However, configuring BaaS appropriately for optimal performance and reliability resorts to try-and-error. A key challenge is that BaaS is often perceived as a “black-box,” leading to uncertainties in performance and resource provisioning. Previous studies attempted to address this challenge; however, the impacts of both vertical and horizontal scaling remain elusive. To this end, we present machine learning-based models to predict network reliability and throughput based on scaling configurations. In our evaluation, the models exhibit prediction errors of 1.9%, which is highly accurate and can be applied in the real-world.
期刊介绍:
The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.